Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Geodesic
Parcourir par
Revues
Séminaires
Livres
Congrès
Sources
Rendiconti del seminario matematico
Tome 61 (2003)
Précédent
Suivant
Sommaire du
Fascicule no. 1
Existence and uniqueness of periodic solutions for a model of contaminant flow in porous medium.
Badii, Maurizio
p. 1-11
On the sets of sequences that are strongly -bounded and -convergent to naught with index .
de Malafosse, Bruno
p. 13-32
Local solvability for semilinear partial differential equations of constant strength.
Messina, F.
p. 33-54
Sommaire du
Fascicule no. 2
Perturbative methods in scales of Banach spaces: applications for Gevrey regularity of solutions to semilinear partial differential equations.
Gramchev, T.
p. 101-134
Hyperbolic equations with non-Lipschitz coefficients.
Reissig, M.
p. 135-182
Riemann-Hilbert problem and solvability of differential equations.
Yoshino, M.
p. 183-208
Sommaire du
Fascicule no. 3
A variational approach to spline functions theory.
Micula, G.
p. 209-227
Quadratic spline quasi-interpolants on bounded domains of .
Sablonnière, P.
p. 229-246
Radial basis functions: basics, advanced topics and meshfree methods for transport problems.
Iske, A.
p. 247-285
About the deficient spline collocation method for particular differential and integral equations with delay.
Calió, F.
;
Marchetti, E.
;
Pavani, R.
p. 287-300
On optimal nodal splines and their applications.
Dagnino, C.
;
Demichelis, V.
;
Santi, Elisabetta
p. 313-332
On optimal center locations for radial basis function interpolation: computational aspects.
De Marchi, S.
p. 343-358
Closed spline curves bounding maximal area.
Sampoli, M.L.
p. 377-391
Sommaire du
Fascicule no. 4
A simple proof that determinacy implies Lebesgue measurability.
Martin, D.A.
p. 393-397
On the discrete wavelet transform of stochastic processes.
Calogero, A.
p. 399-410
Pseudodifferential parametrices of infinite order for SG-hyperbolic problems.
Cappiello, M.
p. 411-441
Estimates of the higher order derivatives of the solutions of hypoelliptic equations.
Hakobyan, G.H.
p. 443-459