Canonical tensor fields of type $(p,0)$ on Weil bundles
Annales Polonici Mathematici, Tome 88 (2006) no. 3, pp. 271-278.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a classification of canonical tensor fields of type $(p,0)$ on an arbitrary Weil bundle over $n$-dimensional manifolds under the condition that $n\ge p$. Roughly speaking, the result we obtain says that each such canonical tensor field is a sum of tensor products of canonical vector fields on the Weil bundle.
DOI : 10.4064/ap88-3-6
Keywords: classification canonical tensor fields type arbitrary weil bundle n dimensional manifolds under condition roughly speaking result obtain says each canonical tensor field sum tensor products canonical vector fields weil bundle

Jacek D/ebecki 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_ap88_3_6,
     author = {Jacek D/ebecki},
     title = {Canonical tensor fields of type $(p,0)$ on {Weil} bundles},
     journal = {Annales Polonici Mathematici},
     pages = {271--278},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2006},
     doi = {10.4064/ap88-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap88-3-6/}
}
TY  - JOUR
AU  - Jacek D/ebecki
TI  - Canonical tensor fields of type $(p,0)$ on Weil bundles
JO  - Annales Polonici Mathematici
PY  - 2006
SP  - 271
EP  - 278
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap88-3-6/
DO  - 10.4064/ap88-3-6
LA  - en
ID  - 10_4064_ap88_3_6
ER  - 
%0 Journal Article
%A Jacek D/ebecki
%T Canonical tensor fields of type $(p,0)$ on Weil bundles
%J Annales Polonici Mathematici
%D 2006
%P 271-278
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap88-3-6/
%R 10.4064/ap88-3-6
%G en
%F 10_4064_ap88_3_6
Jacek D/ebecki. Canonical tensor fields of type $(p,0)$ on Weil bundles. Annales Polonici Mathematici, Tome 88 (2006) no. 3, pp. 271-278. doi : 10.4064/ap88-3-6. http://geodesic.mathdoc.fr/articles/10.4064/ap88-3-6/

Cité par Sources :