For which~$p$ and~$r$ is the equation $\Pi_p(L^r,\cdot)=I_p(L^r,\cdot)$ true?
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 237-242

Voir la notice de l'article provenant de la source Math-Net.Ru

It is explained when the classes of $p$-absolutely summing and $p$-integral operators given on the space $L^r(\mu)$ coincide. For a Banach space $X$ there is considered the following subset of the real line: $$ J_X\stackrel{\mathrm{def}}=\{p\colon1\le p\infty,\ \Pi_p(X,Y)=I_p(X,Y)\ \forall Y\}. $$ In the case when $X$ is an infinite-dimensional subspace of the space $L^r(\mu)$, it is proved that $J_X=(1,2]$ if $1\le r\le2$, and $J_X=\{2\}$ if $2$ and $X$ is not isomorphic with a Hilbert space.
@article{ZNSL_1981_113_a16,
     author = {N. G. Sidorenko},
     title = {For which~$p$ and~$r$ is the equation $\Pi_p(L^r,\cdot)=I_p(L^r,\cdot)$ true?},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {237--242},
     publisher = {mathdoc},
     volume = {113},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a16/}
}
TY  - JOUR
AU  - N. G. Sidorenko
TI  - For which~$p$ and~$r$ is the equation $\Pi_p(L^r,\cdot)=I_p(L^r,\cdot)$ true?
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 237
EP  - 242
VL  - 113
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a16/
LA  - ru
ID  - ZNSL_1981_113_a16
ER  - 
%0 Journal Article
%A N. G. Sidorenko
%T For which~$p$ and~$r$ is the equation $\Pi_p(L^r,\cdot)=I_p(L^r,\cdot)$ true?
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 237-242
%V 113
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a16/
%G ru
%F ZNSL_1981_113_a16
N. G. Sidorenko. For which~$p$ and~$r$ is the equation $\Pi_p(L^r,\cdot)=I_p(L^r,\cdot)$ true?. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XI, Tome 113 (1981), pp. 237-242. http://geodesic.mathdoc.fr/item/ZNSL_1981_113_a16/