The Mathematical Models for Description of Flow of Gas and Foreign Particles and for Non-Stationary Filtration of Liquids and Gas in Porous Medium
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 34-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author discusses different mathematical models of different levels used and developed for the description of the flow of gas or liquid mixtures with foreign “macroparticles” (solid or liquid) of a size of a micron or bigger and the non-stationary filtration of liquids and gas in porous medium. In approximation of interpenetrating continua (continuums) the author points out the role of “sheets” — the breaks lines with the surface density of particles along them. The continuous-discrete model is considered alongside with the approximation of interpenetrating continua for the problems of gas and particles flows. In this model the discrete set of individual macroparticles interacts with the continuous medium of gas or a liquid. In many problems the number of such particles is great enough but much less than the number of atoms interacting with them, as well as molecules of gas or a liquid, and in modern computing conditions the integration of equations describing the movement and collisions of all particles in the computational region becomes possible. It is important that in continuous-discrete model it is done not on the analogy with the kinetic theory of gases (such approaches also are known) with functions of distribution according to particle parameters (sizes, speeds, etc.) but strictly individually. With reference to a non-stationary filtration of liquids the model of instant saturation with attached and free liquids and with features of forward and back fronts of saturation of movement is considered. The opportunities of the phenomenological description of non-stationary gas flow through the surfaces of porosity break are marked.
Keywords: the integral conservation laws; “the sheets” in models of interpenetrating continua; the continuous-discrete model; the model of instant saturation; gas flows through surfaces of porosity break.
@article{VYURU_2014_7_1_a3,
     author = {A. N. Kraiko},
     title = {The {Mathematical} {Models} for {Description} of {Flow} of {Gas} and {Foreign} {Particles} and for {Non-Stationary} {Filtration} of {Liquids} and {Gas} in {Porous} {Medium}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {34--48},
     year = {2014},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a3/}
}
TY  - JOUR
AU  - A. N. Kraiko
TI  - The Mathematical Models for Description of Flow of Gas and Foreign Particles and for Non-Stationary Filtration of Liquids and Gas in Porous Medium
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 34
EP  - 48
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a3/
LA  - ru
ID  - VYURU_2014_7_1_a3
ER  - 
%0 Journal Article
%A A. N. Kraiko
%T The Mathematical Models for Description of Flow of Gas and Foreign Particles and for Non-Stationary Filtration of Liquids and Gas in Porous Medium
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 34-48
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a3/
%G ru
%F VYURU_2014_7_1_a3
A. N. Kraiko. The Mathematical Models for Description of Flow of Gas and Foreign Particles and for Non-Stationary Filtration of Liquids and Gas in Porous Medium. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/VYURU_2014_7_1_a3/

[1] Rakhmatulin Kh. A., “Basics of Gas Dynamics of Interpenetrating Motions of Compressible Media”, Journal of Applied Mathematics and Mechanics, 20:2 (1956), 184–195

[2] Kraiko A. N., Sternin L. E., “On the Theory of Two-Velocity Flows of a Continuous Medium with Solid or Liquid Particles”, Journal of Applied Mathematics and Mechanics, 29:3 (1965), 418–429

[3] Nigmatulin R. I., Fundamentals of mechanics of heterogeneous media, Science, M., 1978 | MR

[4] Nigmatulin R. I., Dynamics of Multiphase Media, Science, M., 1987

[5] Kraiko A. N., “To the Two-Fluid Model of Flows of Gas and Particles Dispersed Therein”, Journal of Applied Mathematics and Mechanics, 46:1 (1982), 96–106 | MR

[6] Kraiko A. N., “The Two-Fluid Model of Gas Flow and Particles Dispersed Therein”, Gas Dynamics. Selected, v. 2, eds. A. N. Kraiko, A. B. Vatazhin, A. N. Sekundov, Fizmatlit, M., 2005, 471–484

[7] Kraiko A. N., Miller L. G., Shirkovskiy I. A., “About Gas Flow in Porous Media with Surfaces of Porosity Discontinuity”, Journal of Applied Mechanics and Technical Physics, 1982, no. 1, 111–118

[8] Zel'dovich Ya. B., Myshkis A. D., Elements of Mathematical Physics, Science, M., 1973 | MR

[9] Kraiko A. N., “About the Surfaces of Discontinuity in a Medium Devoid of Its Own Pressure”, Journal of Applied Mathematics and Mechanics, 43:3 (1979), 500–510 | MR

[10] Kraiko A. N., “On the Theory of Two-Fluid Flows of Gas and Particles Dispersed Therein”, Hydrodynamics and Heat Transfer in Two-Phase Media, ITF SO AN SSSR, Novosibirsk, 1981, 42–52

[11] Kraiko A. N., Sulajmanova S. M., “Two-Fluid Flows Mixture of Gas and Solid Particles with the “Sheets” and “Filaments” that Arise when Flow Impermeable Surfaces”, Journal of Applied Mathematics and Mechanics, 47:4 (1983), 619–630 | MR

[12] Kraiko A. N., “About the Correctness of Cauchy Problem for a Two-Fluid Model of Flow of the Mixture of Gas-Particle”, Journal of Applied Mathematics and Mechanics, 46:3 (1982), 420–428 | MR | Zbl

[13] Kraiko A. N., “Correctness of Cauchy Problem for a Two-Fluid Model of Flow of the Mixture of Gas-Particle”, Gas Dynamics. Selected, v. 2, eds. A. N. Kraiko, A. B. Vatazhin, A. N. Sekundov, Fizmatlit, M., 2005, 485–495

[14] P'yankov K. S., Numerical Modeling of Specialty of a Ideal Gas Flows and Two-Phase Gas-Particle Mixtures, avtoref. ... dis. fiz.-mat. nauk, TSIAM-MFTI, M., 2011

[15] Lyubimov D. A., “Development and Applications of the Efficient Hybrid RANS/ILES Approach for the Calculation of Complex Turbulent Jets”, High Temperature, 46:2 (2008), 243–253 | DOI | MR

[16] Lyubimov D. A., “Development and Application of a High-Resolution Technique for Jet Flow Computation Using Large Eddy Simulation”, High Temperature, 50:3 (2012), 420–436 | DOI

[17] I. N. Kochina, N. N. Mikhailov, M. V. Filinov, “Groundwater mound damping”, Int. J. Engineering Sci., 21:4 (1983), 413–421 | DOI | MR | Zbl

[18] Kraiko A. N., Makhmudov A. A., About Modeling of Unsteady Filtration of Heavy Fluid, Preprint No 168-88, ITF SO AN SSSR, Novosibirsk, 1988

[19] Kraiko A. N., Makhmudov A. A., “Solution of Two-Dimensional Problem of Fluid Filtration in Porous Soil in the Model of Instantaneous Saturation”, Izvestiya AN SSSR. Mekhanika Zhidkosti i Gaza, 1989, no. 4, 103–110

[20] Kraiko A. N., Salomov Sh., “Solution of the Two-Dimensiomal Problems of Unsteady Filtration of Heavy Liquid in Unsaturated Porous Soil in the Model of Instantaneous Saturation”, Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 1992, no. 1, 86–94

[21] Kraiko A. N., Salomov Sh., “Solution of the Two-Dimensiomal Problems of Unsteady Filtration of Heavy Liquid Unsaturated Porous Soil in the Model of Instantaneous Saturation”, Fluid Mechanics. Selected, eds. A. N. Kraiko, A. B. Vatazhin, G. A. Lyubimov, Fizmatlit, M., 2003, 300–310

[22] Leibenson L. S., Collected Papers, v. 2, Underground Fluid Dynamics, Izd-vo AN SSSR, M., 1953

[23] Verigin N. N., “Movement Moisture in the Soil”, Dokl. AN SSSR, 89:2 (1953), 229–232

[24] Verigin N. N., “Wetting the Soil under Irrigation by Sprinkling”, Dokl. AN SSSR, 89:4 (1953), 627–630

[25] Grin' V. T., Kraiko A. N., Miller L. G., “To Decay of an Arbitrary Discontinuity on a Perforated Septum”, Journal of Applied Mechanics and Technical Physics, 1981, no. 3, 95–103

[26] Il'in Yu. P., “Interaction of Shock Waves with a Semi-Infinite Porous Medium”, Applied Mathematics, 2, izd. TPI, Tula, 1975, 33–40