A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 133-146
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of longitudinal and transverse vibrations of a barrel with arbitrary cross-sectional shapes is considered and solved in the framework of a one-dimensional model. The study shows that the amplitude of transverse vibrations in the vertical plane significantly exceeds that in the horizontal plane. This paper proposes to reduce the amplitude of vibrations by changing the shape of the barrel cross-section, namely by adding stiffeners. The numerical algorithm for solving the problem is developed on the basis of the integro-interpolation method. The verification of the numerical integration method is carried out, and the grid convergence is verified by means of the modeling of barrel vibrations for a 30 mm automatic cannon. The study of the impact of the barrel cross-section shape shows that the use of stiffeners can reduce the initial deflection and the amplitude of muzzle vibrations when firing in bursts. The obtained results demonstrate a narrow spread of projectile departure angles, and, consequently, the improved shooting accuracy of the automatic cannon.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
mathematical model, numerical methods, barrel vibrations, automatic cannon, stiffening.
                    
                  
                
                
                @article{VTGU_2022_80_a11,
     author = {I. G. Rusyak and V. G. Sufiyanov and D. A. Klyukin},
     title = {A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {133--146},
     publisher = {mathdoc},
     number = {80},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_80_a11/}
}
                      
                      
                    TY - JOUR AU - I. G. Rusyak AU - V. G. Sufiyanov AU - D. A. Klyukin TI - A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2022 SP - 133 EP - 146 IS - 80 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2022_80_a11/ LA - ru ID - VTGU_2022_80_a11 ER -
%0 Journal Article %A I. G. Rusyak %A V. G. Sufiyanov %A D. A. Klyukin %T A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2022 %P 133-146 %N 80 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2022_80_a11/ %G ru %F VTGU_2022_80_a11
I. G. Rusyak; V. G. Sufiyanov; D. A. Klyukin. A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 133-146. http://geodesic.mathdoc.fr/item/VTGU_2022_80_a11/
