A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 133-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of longitudinal and transverse vibrations of a barrel with arbitrary cross-sectional shapes is considered and solved in the framework of a one-dimensional model. The study shows that the amplitude of transverse vibrations in the vertical plane significantly exceeds that in the horizontal plane. This paper proposes to reduce the amplitude of vibrations by changing the shape of the barrel cross-section, namely by adding stiffeners. The numerical algorithm for solving the problem is developed on the basis of the integro-interpolation method. The verification of the numerical integration method is carried out, and the grid convergence is verified by means of the modeling of barrel vibrations for a 30 mm automatic cannon. The study of the impact of the barrel cross-section shape shows that the use of stiffeners can reduce the initial deflection and the amplitude of muzzle vibrations when firing in bursts. The obtained results demonstrate a narrow spread of projectile departure angles, and, consequently, the improved shooting accuracy of the automatic cannon.
Keywords: mathematical model, numerical methods, barrel vibrations, automatic cannon, stiffening.
@article{VTGU_2022_80_a11,
     author = {I. G. Rusyak and V. G. Sufiyanov and D. A. Klyukin},
     title = {A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {133--146},
     year = {2022},
     number = {80},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2022_80_a11/}
}
TY  - JOUR
AU  - I. G. Rusyak
AU  - V. G. Sufiyanov
AU  - D. A. Klyukin
TI  - A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2022
SP  - 133
EP  - 146
IS  - 80
UR  - http://geodesic.mathdoc.fr/item/VTGU_2022_80_a11/
LA  - ru
ID  - VTGU_2022_80_a11
ER  - 
%0 Journal Article
%A I. G. Rusyak
%A V. G. Sufiyanov
%A D. A. Klyukin
%T A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2022
%P 133-146
%N 80
%U http://geodesic.mathdoc.fr/item/VTGU_2022_80_a11/
%G ru
%F VTGU_2022_80_a11
I. G. Rusyak; V. G. Sufiyanov; D. A. Klyukin. A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 80 (2022), pp. 133-146. http://geodesic.mathdoc.fr/item/VTGU_2022_80_a11/

[1] Orlov B. V., Larman E. K., Malikov V. G., Ustroistvo i proektirovanie stvolov artilleriiskikh orudii, Mashinostroenie, M., 1976, 432 pp.

[2] Khomenko Yu. P., Ischenko A. N., Kasimov V. Z., Matematicheskoe modelirovanie vnutribal listicheskikh protsessov v stvolnykh sistemakh, Izd-vo SO RAN, Novosibirsk, 1999, 256 pp.

[3] Antonenko E. D., Egorov V. V., Kudryashova I. A., Filenko A. V., “Issledovanie reshenii dlya umensheniya izgiba artstvolov”, Kalashnikovskie chteniya, materialy VII Vseros. nauch.-prakt. online-konf., v ramkakh III Molodezh. foruma studentov i kursantov oboronnykh spetsialnostei vuzov Rossii «S imenem Kalashnikova», Izd-vo IzhGTU im. M.T. Kalashnikova, Izhevsk, 2020, 71–75

[4] Mk44 Bushmaster II, Wikipedia contributors, (accessed: 13.02.2022) https://en.wikipedia.org/wiki/Mk44_Bushmaster_II

[5] Akhromeev S. F., Voennyi entsiklopedicheskii slovar, Voenizdat, M., 1986, 863 pp.

[6] Rusyak I. G., Sufiyanov V. G., Klyukin D. A., “Issledovanie vliyaniya uprugikh deformatsii i kolebanii stvola na tochnost strelby”, Intellektualnye sistemy v proizvodstve, 18:4 (2020), 98–108 | DOI

[7] Serebryakov M. E., Vnutrennyaya ballistika stvolnykh sistem i porokhovykh raket, Oborongiz, M., 1962, 703 pp.

[8] Rusyak I. G., Lipanov A. M., Ushakov V. M., Fizicheskie osnovy i gazovaya dinamika goreniya porokhov v artilleriiskikh sistemakh, Izhevskii in-t kompyuternykh issled., M.–Izhevsk, 2016, 456 pp. | MR

[9] Rabotnov Yu. N., Soprotivlenie materialov, Fizmatgiz, M., 1963, 456 pp.

[10] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971, 552 pp.

[11] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 432 pp.

[12] Skvortsov A. V., Mirza N. S., Algoritmy postroeniya i analiza triangulyatsii, Izd-vo Tom. un-ta, Tomsk, 2006, 168 pp.