Rise of detonation at the incidence of a shock wave onto the wall
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1983), pp. 55-59
Voir la notice de l'article provenant de la source Math-Net.Ru
All possible types of reflection of the constant intensity shock wave from the solid wall in the detonable gas mixture are considered in the case where the reflected wave is a detonation wave. The same is done in the case of interaction with the wall of both falling and reflected shock and detonation waves. We find the existence regions of these interactions for the gas mixture
$\mathrm{H}_2+0{,}5\mathrm{O}_2+2{,}5\mathrm{N}_2$. Their interpretation is given by means of the shock and detonation polars. We show that for the regular reflection (except when $\alpha_0=0$ and $\frac{p_1}{p_0}=\biggl(\frac{p_1}{p_0}\biggr)_{\min}\biggr)$ the reflected wave is a strong detonation wave. For the Mach reflection this is the Chapman–Jouget detonation wave with attendant rare wave.
@article{VMUMM_1983_1_a14,
author = {N. D. Vysk},
title = {Rise of detonation at the incidence of a shock wave onto the wall},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {55--59},
publisher = {mathdoc},
number = {1},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a14/}
}
N. D. Vysk. Rise of detonation at the incidence of a shock wave onto the wall. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1983), pp. 55-59. http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a14/