The comparative analysis of Nash’s equilibrium and Pareto-optimal set in non-antagonistic game with some aim points
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1987), pp. 30-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many players differential non-coalition game with terminal prize has been considered. The players were using the piecewise program strategies memorizing the game prehistory. The comparative analysis of Pareto-optimal and Nash’s equilibrium situations have been presented. It has been proved that they are not covering each other. The obtained result has been illustrated by one concrete example.
@article{UZERU_1987_3_a4,
     author = {O. S. Mikaelyan},
     title = {The comparative analysis of {Nash{\textquoteright}s} equilibrium and {Pareto-optimal} set in non-antagonistic game with some aim points},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {30--36},
     publisher = {mathdoc},
     number = {3},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1987_3_a4/}
}
TY  - JOUR
AU  - O. S. Mikaelyan
TI  - The comparative analysis of Nash’s equilibrium and Pareto-optimal set in non-antagonistic game with some aim points
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1987
SP  - 30
EP  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1987_3_a4/
LA  - ru
ID  - UZERU_1987_3_a4
ER  - 
%0 Journal Article
%A O. S. Mikaelyan
%T The comparative analysis of Nash’s equilibrium and Pareto-optimal set in non-antagonistic game with some aim points
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1987
%P 30-36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1987_3_a4/
%G ru
%F UZERU_1987_3_a4
O. S. Mikaelyan. The comparative analysis of Nash’s equilibrium and Pareto-optimal set in non-antagonistic game with some aim points. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1987), pp. 30-36. http://geodesic.mathdoc.fr/item/UZERU_1987_3_a4/

[1] L. A. Petrosyan, “Ustoichivye resheniya differentsialnykh igr so mnogimi uchastnikami”, Vestnik Leningradskogo Universiteta, 1977, no. 19, 46–52 | Zbl

[2] L. A. Petrosyan, G. V. Tomskii, Dinamicheskie igry i ikh prilozheniya, Izd-vo LGU, L., 1982 | MR | Zbl

[3] L. A. Petrosyan, N. N. Danilov, Kooperativnye differentsialnye igry i ikh prilozheniya, Izdatelstvo Tomskogo Universiteta, Tomsk, 1982 | MR | Zbl

[4] N. N. Danilov, “Mnozhestvo Pareto v odnoi differentsialnoi igre $n$ lits s nestrogim sopernichestvom”, Nekotorye voprosy differentsialnykh i integralnykh uravnenii i ikh prilozheniya, v. 2, Yakutsk, 1977, 25–35

[5] A. F. Kononenko, “Struktura ravnovesnykh pozitsionnykh strategii v differentsialnykh igrakh s nenulevoi summoi”, Doklady AN SSSR, 231 (1976) | Zbl

[6] O. A. Malafeev, “Suschestvovanie situatsii ravnovesiya v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik Leningradskogo Universiteta, 1982, no. A 13, 40–46 | Zbl

[7] A. F. Kleimenov, K teorii ierarkhicheskikh differentsialnykh igr dvukh lits, Preprint, 67 s., UNTs AN SSSR, Sverdlovsk, 1985