Martingale approach in the theory of goodness-of-fit tests
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 246-265

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us consider the parametric hypothesis that the distribution function $F$ of i. i. d. random variables belongs to the given parametric family of distribution functions $\mathbf F=\{F(x,\theta),\,\theta\in\Theta\}$. It is well-known that the limiting distribution of the parametric empirical process $\sqrt n[F_n(x)-F(x,\widehat\theta)]$ depends on $F$, and therefore the «usual» testing procedures become inconvenient. In the paper we consider the parametric empirical process as a semimartingale. By means of its Doob–Meyer decomposition we construct some martingale and show that this martingale converges weakly to the Wiener process. This fact enables us to use the distribution-free asymptotic theory of testing parametric hypotheses.
@article{TVP_1981_26_2_a1,
     author = {E. V. Hmaladze},
     title = {Martingale approach in the theory of goodness-of-fit tests},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {246--265},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a1/}
}
TY  - JOUR
AU  - E. V. Hmaladze
TI  - Martingale approach in the theory of goodness-of-fit tests
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 246
EP  - 265
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a1/
LA  - ru
ID  - TVP_1981_26_2_a1
ER  - 
%0 Journal Article
%A E. V. Hmaladze
%T Martingale approach in the theory of goodness-of-fit tests
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 246-265
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a1/
%G ru
%F TVP_1981_26_2_a1
E. V. Hmaladze. Martingale approach in the theory of goodness-of-fit tests. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 246-265. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a1/