Martingale approach in the theory of goodness-of-fit tests
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 246-265
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let us consider the parametric hypothesis that the distribution function $F$ of i. i. d. random variables belongs to the given parametric family of distribution functions $\mathbf F=\{F(x,\theta),\,\theta\in\Theta\}$. It is well-known that the limiting distribution of the parametric empirical process 
$\sqrt n[F_n(x)-F(x,\widehat\theta)]$ depends on $F$, and therefore the «usual» testing procedures become inconvenient.
In the paper we consider the parametric empirical process as a semimartingale. By means of its Doob–Meyer decomposition we construct some martingale and show that this martingale converges weakly to the Wiener process. This fact enables us to use the distribution-free asymptotic theory of testing parametric hypotheses.
			
            
            
            
          
        
      @article{TVP_1981_26_2_a1,
     author = {E. V. Hmaladze},
     title = {Martingale approach in the theory of goodness-of-fit tests},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {246--265},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a1/}
}
                      
                      
                    E. V. Hmaladze. Martingale approach in the theory of goodness-of-fit tests. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 246-265. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a1/
