Differential games for neutral-type systems: An approximation model
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 202-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a conflict-controlled dynamical system whose motion is described by neutral-type functional differential equations in Hale's form and for a quality index that evaluates the motion history realized up to the terminal instant of time, we consider a differential game in the class of control-with-guide strategies. We construct an approximating differential game in the class of pure positional strategies in which the motion of a conflict-controlled system is described by ordinary differential equations and the quality index is terminal. We show that the value of the approximating game gives the value of the original game in the limit, and that the optimal strategies in the original game can be constructed by using the optimal motions of the approximating game as guides.
@article{TRSPY_2015_291_a14,
     author = {N. Yu. Lukoyanov and A. R. Plaksin},
     title = {Differential games for neutral-type systems: {An} approximation model},
     journal = {Informatics and Automation},
     pages = {202--214},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a14/}
}
TY  - JOUR
AU  - N. Yu. Lukoyanov
AU  - A. R. Plaksin
TI  - Differential games for neutral-type systems: An approximation model
JO  - Informatics and Automation
PY  - 2015
SP  - 202
EP  - 214
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a14/
LA  - ru
ID  - TRSPY_2015_291_a14
ER  - 
%0 Journal Article
%A N. Yu. Lukoyanov
%A A. R. Plaksin
%T Differential games for neutral-type systems: An approximation model
%J Informatics and Automation
%D 2015
%P 202-214
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a14/
%G ru
%F TRSPY_2015_291_a14
N. Yu. Lukoyanov; A. R. Plaksin. Differential games for neutral-type systems: An approximation model. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 202-214. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a14/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR

[2] Fleming W.H., “The convergence problem for differential games”, J. Math. Anal. Appl., 3 (1961), 102–116 | DOI | MR | Zbl

[3] Friedman A., Differential games, Wiley Intersci., New York, 1971 | MR | Zbl

[4] Pontryagin L.S., “O lineinykh differentsialnykh igrakh. I, II”, DAN SSSR, 174:6 (1967), 1278–1280 ; 175:4, 764–766 | Zbl | Zbl

[5] Pontryagin L.S., “Matematicheskaya teoriya optimalnykh protsessov i differentsialnye igry”, Tr. MIAN, 169 (1985), 119–158 | MR | Zbl

[6] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[7] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[8] Osipov Yu.S., “K teorii differentsialnykh igr sistem s posledeistviem”, PMM, 35:2 (1971), 300–311 | Zbl

[9] Hale J.K., Cruz M.A., “Existence, uniqueness and continuous dependence for hereditary systems”, Ann. Mat. Pura Appl. Ser. 4, 85 (1970), 63–81 | DOI | MR | Zbl

[10] Krasovskii N.N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, PMM, 28:4 (1964), 716–724 | MR

[11] Repin Yu.M., “O priblizhennoi zamene sistem s zapazdyvaniem obyknovennymi dinamicheskimi sistemami”, PMM, 29:2 (1965), 226–235 | MR | Zbl

[12] Kurzhanskii A.B., “K approksimatsii lineinykh differentsialnykh uravnenii s zapazdyvaniem”, Dif. uravneniya, 3:12 (1967), 2094–2107

[13] Banks H.T., Burns J.A., “Hereditary control problems: Numerical methods based on averaging approximations”, SIAM J. Control Optim., 16 (1978), 169–208 | DOI | MR | Zbl

[14] Kryazhimskii A.V., Maksimov V.I., “Approksimatsiya lineinykh differentsialno-raznostnykh igr”, PMM, 42:2 (1978), 202–209 | MR

[15] Oparin N.P., “Ob approksimatsii sistem neitralnogo tipa”, Trudy seminara po teorii differentsialnykh uravnenii s otklonyayuschimsya argumentom, 11, Un-t druzhby narodov im. P. Lumumby, M., 1979, 52–60 | MR

[16] Kunisch K., “Approximation schemes for nonlinear neutral optimal control systems”, J. Math. Anal. Appl., 82 (1981), 112–143 | DOI | MR | Zbl

[17] Matvii O.V., Cherevko I.M., “On approximation of systems of differential–difference equations of neutral type by systems of ordinary differential equations”, Nonlinear Oscil., 10:3 (2007), 330–338 | DOI | MR | Zbl

[18] Fabiano R.H., “A semidiscrete approximation scheme for neutral delay–differential equations”, Int. J. Numer. Anal. Model., 10:3 (2013), 712–726 | MR | Zbl

[19] Lukoyanov N.Yu., Plaksin A.R., “Konechnomernye modeliruyuschie povodyri v sistemakh s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 182–195

[20] Lukoyanov N.Yu., Plaksin A.R., “Ob approksimatsii nelineinykh konfliktno-upravlyaemykh sistem neitralnogo tipa”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 204–217 | MR

[21] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[22] Kurzhanskii A.B., “O suschestvovanii reshenii uravnenii s posledeistviem”, Dif. uravneniya, 6:10 (1970), 1800–1809