On an optimal flow in a class of nilpotent convex problems
Informatics and Automation, Optimal control, Tome 291 (2015), pp. 157-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

A comprehensive analysis of optimal synthesis is carried out for a class of nilpotent convex problems with multidimensional control. It is shown that the synthesis of optimal trajectories forms a nonsmooth half-flow (which is reasonably called optimal) in the state space. An optimal solution starting at some point of the state space is the trajectory of this point under the action of the optimal flow. The existence of an optimal flow entails many important corollaries. For example, applying the Cantor–Bendixson theorem, one can prove that an optimal control in nilpotent convex problems may have at most a countable number of discontinuity points.
@article{TRSPY_2015_291_a12,
     author = {L. V. Lokutsievskiy},
     title = {On an optimal flow in a class of nilpotent convex problems},
     journal = {Informatics and Automation},
     pages = {157--181},
     publisher = {mathdoc},
     volume = {291},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a12/}
}
TY  - JOUR
AU  - L. V. Lokutsievskiy
TI  - On an optimal flow in a class of nilpotent convex problems
JO  - Informatics and Automation
PY  - 2015
SP  - 157
EP  - 181
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a12/
LA  - ru
ID  - TRSPY_2015_291_a12
ER  - 
%0 Journal Article
%A L. V. Lokutsievskiy
%T On an optimal flow in a class of nilpotent convex problems
%J Informatics and Automation
%D 2015
%P 157-181
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a12/
%G ru
%F TRSPY_2015_291_a12
L. V. Lokutsievskiy. On an optimal flow in a class of nilpotent convex problems. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 157-181. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a12/

[1] Hildebrand R., Lokutsievskiy L.V., Zelikin M.I., “Generic fractal structure of finite parts of trajectories of piecewise smooth Hamiltonian systems”, Russ. J. Math. Phys., 20:1 (2013), 25–32 | DOI | MR | Zbl

[2] Schneider R., Convex bodies: The Brunn–Minkowski theory, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[3] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994 | MR | Zbl

[4] Agrachev A.A., Sachkov Yu.L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004

[5] Zelikin M.I., Lokutsievskii L.V., Khildebrand R., “Geometriya okrestnostei osobykh ekstremalei v zadachakh s mnogomernym upravleniem”, Tr. MIAN, 277 (2012), 74–90 | MR | Zbl

[6] Zelikin M.I., Lokutsievskii L.V., Khildebrand R., “Tipichnost fraktalno-khaoticheskoi struktury integralnykh voronok v gamiltonovykh sistemakh s razryvnoi pravoi chastyu”, Sovr. matematika. Fund. napr., 56 (2015), 5–128

[7] Lokutsievskii L.V., “Osobye rezhimy v upravlyaemykh sistemakh s mnogomernym upravleniem iz mnogogrannika”, Izv. RAN. Ser. mat., 78:5 (2014), 167–190 | DOI | MR | Zbl

[8] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[9] Khelemskii A.Ya., Lektsii po funktsionalnomu analizu, Sovr. lekts. kursy, MTsNMO, M., 2004