Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2015_291_a12, author = {L. V. Lokutsievskiy}, title = {On an optimal flow in a class of nilpotent convex problems}, journal = {Informatics and Automation}, pages = {157--181}, publisher = {mathdoc}, volume = {291}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a12/} }
L. V. Lokutsievskiy. On an optimal flow in a class of nilpotent convex problems. Informatics and Automation, Optimal control, Tome 291 (2015), pp. 157-181. http://geodesic.mathdoc.fr/item/TRSPY_2015_291_a12/
[1] Hildebrand R., Lokutsievskiy L.V., Zelikin M.I., “Generic fractal structure of finite parts of trajectories of piecewise smooth Hamiltonian systems”, Russ. J. Math. Phys., 20:1 (2013), 25–32 | DOI | MR | Zbl
[2] Schneider R., Convex bodies: The Brunn–Minkowski theory, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[3] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994 | MR | Zbl
[4] Agrachev A.A., Sachkov Yu.L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004
[5] Zelikin M.I., Lokutsievskii L.V., Khildebrand R., “Geometriya okrestnostei osobykh ekstremalei v zadachakh s mnogomernym upravleniem”, Tr. MIAN, 277 (2012), 74–90 | MR | Zbl
[6] Zelikin M.I., Lokutsievskii L.V., Khildebrand R., “Tipichnost fraktalno-khaoticheskoi struktury integralnykh voronok v gamiltonovykh sistemakh s razryvnoi pravoi chastyu”, Sovr. matematika. Fund. napr., 56 (2015), 5–128
[7] Lokutsievskii L.V., “Osobye rezhimy v upravlyaemykh sistemakh s mnogomernym upravleniem iz mnogogrannika”, Izv. RAN. Ser. mat., 78:5 (2014), 167–190 | DOI | MR | Zbl
[8] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR
[9] Khelemskii A.Ya., Lektsii po funktsionalnomu analizu, Sovr. lekts. kursy, MTsNMO, M., 2004