Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 61-86
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M^n$ be a closed orientable manifold of dimension greater than three and $G_1(M^n)$ be the class of orientation-preserving Morse–Smale diffeomorphisms on $M^n$ such that the set of unstable separatrices of every $f\in G_1(M^n)$ is one-dimensional and does not contain heteroclinic orbits. We show that the Peixoto graph is a complete invariant of topological conjugacy in $G_1(M^n)$.
@article{TRSPY_2008_261_a5,
author = {V. Z. Grines and E. Ya. Gurevich and V. S. Medvedev},
title = {Peixoto {Graph} of {Morse--Smale} {Diffeomorphisms} on {Manifolds} of {Dimension} {Greater} than {Three}},
journal = {Informatics and Automation},
pages = {61--86},
publisher = {mathdoc},
volume = {261},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/}
}
TY - JOUR AU - V. Z. Grines AU - E. Ya. Gurevich AU - V. S. Medvedev TI - Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three JO - Informatics and Automation PY - 2008 SP - 61 EP - 86 VL - 261 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/ LA - ru ID - TRSPY_2008_261_a5 ER -
%0 Journal Article %A V. Z. Grines %A E. Ya. Gurevich %A V. S. Medvedev %T Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three %J Informatics and Automation %D 2008 %P 61-86 %V 261 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/ %G ru %F TRSPY_2008_261_a5
V. Z. Grines; E. Ya. Gurevich; V. S. Medvedev. Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 61-86. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/