Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 61-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M^n$ be a closed orientable manifold of dimension greater than three and $G_1(M^n)$ be the class of orientation-preserving Morse–Smale diffeomorphisms on $M^n$ such that the set of unstable separatrices of every $f\in G_1(M^n)$ is one-dimensional and does not contain heteroclinic orbits. We show that the Peixoto graph is a complete invariant of topological conjugacy in $G_1(M^n)$.
@article{TRSPY_2008_261_a5,
     author = {V. Z. Grines and E. Ya. Gurevich and V. S. Medvedev},
     title = {Peixoto {Graph} of {Morse--Smale} {Diffeomorphisms} on {Manifolds} of {Dimension} {Greater} than {Three}},
     journal = {Informatics and Automation},
     pages = {61--86},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
AU  - V. S. Medvedev
TI  - Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three
JO  - Informatics and Automation
PY  - 2008
SP  - 61
EP  - 86
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/
LA  - ru
ID  - TRSPY_2008_261_a5
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%A V. S. Medvedev
%T Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three
%J Informatics and Automation
%D 2008
%P 61-86
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/
%G ru
%F TRSPY_2008_261_a5
V. Z. Grines; E. Ya. Gurevich; V. S. Medvedev. Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 61-86. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/