Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three
Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 61-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M^n$ be a closed orientable manifold of dimension greater than three and $G_1(M^n)$ be the class of orientation-preserving Morse–Smale diffeomorphisms on $M^n$ such that the set of unstable separatrices of every $f\in G_1(M^n)$ is one-dimensional and does not contain heteroclinic orbits. We show that the Peixoto graph is a complete invariant of topological conjugacy in $G_1(M^n)$.
@article{TRSPY_2008_261_a5,
     author = {V. Z. Grines and E. Ya. Gurevich and V. S. Medvedev},
     title = {Peixoto {Graph} of {Morse--Smale} {Diffeomorphisms} on {Manifolds} of {Dimension} {Greater} than {Three}},
     journal = {Informatics and Automation},
     pages = {61--86},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
AU  - V. S. Medvedev
TI  - Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three
JO  - Informatics and Automation
PY  - 2008
SP  - 61
EP  - 86
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/
LA  - ru
ID  - TRSPY_2008_261_a5
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%A V. S. Medvedev
%T Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three
%J Informatics and Automation
%D 2008
%P 61-86
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/
%G ru
%F TRSPY_2008_261_a5
V. Z. Grines; E. Ya. Gurevich; V. S. Medvedev. Peixoto Graph of Morse--Smale Diffeomorphisms on Manifolds of Dimension Greater than Three. Informatics and Automation, Differential equations and dynamical systems, Tome 261 (2008), pp. 61-86. http://geodesic.mathdoc.fr/item/TRSPY_2008_261_a5/

[1] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR | Zbl

[2] Bezdenezhnykh A. N., Grines V. Z., “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. I”, Sel. Math. Sov., 11:1 (1992), 1–11 ; “II”, 13–17 | MR | Zbl | MR | Zbl

[3] Bing R. H., “Locally tame sets are tame”, Ann. Math. Ser. 2, 59 (1954), 145–158 | DOI | MR | Zbl

[4] Bonatti C., Grines V., “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Control Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl

[5] Bonatti Kh., Grines V. Z., Medvedev V. S., Peku E., “O diffeomorfizmakh Morsa–Smeila bez geteroklinicheskikh peresechenii na trekhmernykh mnogoobraziyakh”, Tr. MIAN, 236, 2002, 66–78 | MR | Zbl

[6] Bonatti C., Grines V., Medvedev V., Pécou E., “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topol. and Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl

[7] Bonatti C., Grines V., Medvedev V., Pécou E., “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl

[8] Bonatti X., Grines V. Z., Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh orbit na 3-mnogoobraziyakh”, Tr. MIAN, 250, 2005, 5–53 | MR | Zbl

[9] Brown M., “Locally flat imbeddings of topological manifolds”, Ann. Math. Ser. 2, 75 (1962), 331–341 | DOI | MR | Zbl

[10] Brown M., “A proof of the generalized Schoenflies theorem”, Bull. Amer. Math. Soc., 66 (1960), 74–76 | DOI | MR | Zbl

[11] Brown M., Gluck H., “Stable structures on manifolds. I: Homeomorphisms of $S^n$”, Ann. Math. Ser. 2, 79 (1964), 1–17 | DOI | MR | Zbl

[12] Cantrell J. C., “Almost locally flat embeddings of $S^{n-1}$ in $S^n$”, Bull. Amer. Math. Soc., 69 (1963), 716–718 | DOI | MR | Zbl

[13] Cantrell J. C., “$n$-Frames in Euclidean $k$-space”, Proc. Amer. Math. Soc., 15:4 (1964), 574–578 | DOI | MR | Zbl

[14] Cantrell J. C., Edwards C. H., “Almost locally polyhedral curves in Euclidean $n$-space”, Trans. Amer. Math. Soc., 107:3 (1963), 451–457 | DOI | MR | Zbl

[15] Chernavskii A. V., “O rabotakh L. V. Keldysh i ee seminara”, UMN, 60:4 (2005), 11–36 | MR | Zbl

[16] Daverman R. J., “Embeddings of $(n-1)$-spheres in Euclidean $n$-space”, Bull. Amer. Math. Soc., 84 (1978), 377–405 | DOI | MR | Zbl

[17] Edwards R. D., “The solution of the 4-dimensional annulus conjecture (after Frank Quinn)”, Contemp. Math., 35 (1984), 211–264 | MR | Zbl

[18] Gluck H., “Embeddings in the trivial range”, Ann. Math. Ser. 2, 81 (1965), 195–210 | DOI | MR | Zbl

[19] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki, 54:3 (1993), 3–17 | MR | Zbl

[20] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “O diffeomorfizmakh Morsa–Smeila s chetyrmya periodicheskimi tochkami na zamknutykh orientiruemykh mnogoobraziyakh”, Mat. zametki, 74:3 (2003), 369–386 | MR | Zbl

[21] Gugenheim V. K. A. M., “Piecewise linear isotopy and embedding of elements and spheres”, Proc. London Math. Soc. Ser. 3, 3 (1953), 29–53 | DOI | MR | Zbl

[22] Hudson J. F. P., Zeeman E. C., “On combinatorial isotopy”, Publ. Math. IHES, 19 (1964), 69–94 | MR | Zbl

[23] Gurevich V., Volmen G., Teoriya razmernosti, Izd-vo inostr. lit., M., 1948

[24] Kirby R. C., “Stable homeomorphisms and the annulus conjecture”, Ann. Math. Ser. 2, 89 (1969), 575–582 | DOI | MR | Zbl

[25] Keldysh L. V., Topologicheskie vlozheniya v evklidovo prostranstvo, Tr. MIAN, 81, Nauka, M., 1966

[26] Kosnevski Ch., Nachalnyi kurs algebraicheskoi topologii, Mir, M., 1983 | MR

[27] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem: Vvedenie, Mir, M., 1986 | MR

[28] Palis J., Smale S., “Structural stability theorems”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231 ; Pali Dzh., Smeil S., “Teoremy strukturnoi ustoichivosti”, Matematika, 13:2 (1969), 145–155 | MR

[29] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Univ. Bahia (Salvador, Brazil, 1971), Acad. Press, New York–London, 1973, 389–419 | MR

[30] Pixton D., “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[31] Pontryagin L. S., Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopii, Nauka, M., 1976 | MR | Zbl

[32] Pontryagin L. S., Osnovy kombinatornoi topologii, Nauka, M., 1986 | MR | Zbl

[33] Quinn F., “The embedding theorem for towers”, Contemp. Math., 35 (1984), 461–471 | MR | Zbl

[34] Rurk K., Sanderson B., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR

[35] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, In-t kompyut. issled., Moskva, Izhevsk, 2004

[36] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR

[37] Whitehead J. H. C., “On subdivisions of complexes”, Proc. Cambridge Phil. Soc., 31 (1935), 69–75 | DOI | Zbl

[38] Whitehead J. H. C., “On $C^1$-complexes”, Ann. Math. Ser. 2, 41 (1940), 809–824 | DOI | MR | Zbl

[39] Zeeman E. C., “Unknotting spheres”, Ann. Math. Ser. 2, 72 (1960), 350–361 | DOI | MR | Zbl

[40] Zeifert G., Trelfall V., Topologiya, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001