The holomorphic effective action in $N$=2 $D$=4 supergauge theories with various gauge groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 444-455

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the theory of hypermultiplets in arbitrary representations of arbitrary semisimple gauge groups coupled to gauge superfields. Using the $N=2$ harmonic superspace formulation of these models, we find the general structure of the holomorphic effective action depending on the gauge superfield with values in the Cartan subalgebra of the gauge algebra. We find explicit expressions for the effective actions in the cases where the hypermultiplets are in the fundamental and adjoint representations of $SU(n)$, $SO(n)$, and $Sp(2n)$.
@article{TMF_2000_122_3_a10,
     author = {I. L. Buchbinder and I. B. Samsonov},
     title = {The holomorphic effective action in $N$=2 $D$=4 supergauge theories with various gauge groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {444--455},
     publisher = {mathdoc},
     volume = {122},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a10/}
}
TY  - JOUR
AU  - I. L. Buchbinder
AU  - I. B. Samsonov
TI  - The holomorphic effective action in $N$=2 $D$=4 supergauge theories with various gauge groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 444
EP  - 455
VL  - 122
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a10/
LA  - ru
ID  - TMF_2000_122_3_a10
ER  - 
%0 Journal Article
%A I. L. Buchbinder
%A I. B. Samsonov
%T The holomorphic effective action in $N$=2 $D$=4 supergauge theories with various gauge groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 444-455
%V 122
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a10/
%G ru
%F TMF_2000_122_3_a10
I. L. Buchbinder; I. B. Samsonov. The holomorphic effective action in $N$=2 $D$=4 supergauge theories with various gauge groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 444-455. http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a10/