Method of steepest descent for path integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 210-216

Voir la notice de l'article provenant de la source Math-Net.Ru

To estimate path integral for a nonrelativistic particle with one degree of freedom moving in a arbitrary potential $V(x)$ it is supposed to use the pass method, being an analog of the known pass method for finite-dimensional integrals, without transferring to the euclidean formulation of the theory. The notions of the functional Cauchy–Riemann conditions and the Cauchy theorem in a complex functional space are introduced. Given a contour of the most rapid descending the initial path integral is reduced to the one with the descending exponent. In principle, this result may serve as a base to construct a path integral measure.
@article{TMF_1995_102_2_a3,
     author = {A. L. Koshkarov},
     title = {Method of steepest descent for path integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {210--216},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a3/}
}
TY  - JOUR
AU  - A. L. Koshkarov
TI  - Method of steepest descent for path integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1995
SP  - 210
EP  - 216
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a3/
LA  - ru
ID  - TMF_1995_102_2_a3
ER  - 
%0 Journal Article
%A A. L. Koshkarov
%T Method of steepest descent for path integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1995
%P 210-216
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a3/
%G ru
%F TMF_1995_102_2_a3
A. L. Koshkarov. Method of steepest descent for path integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 210-216. http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a3/