Method of steepest descent for path integrals
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 210-216
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			To estimate path integral for a nonrelativistic particle with one degree of freedom moving in a arbitrary potential $V(x)$ it is supposed to use the pass method, being an analog of the known pass method for finite-dimensional integrals, without transferring to the euclidean formulation of the theory. The notions of the functional Cauchy–Riemann conditions and the Cauchy theorem in a complex functional space are introduced. Given a contour of the most rapid descending the initial path integral is reduced to the one with the descending exponent. In principle, this result may serve as a base to construct a path integral measure.
			
            
            
            
          
        
      @article{TMF_1995_102_2_a3,
     author = {A. L. Koshkarov},
     title = {Method of steepest descent for path integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {210--216},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a3/}
}
                      
                      
                    A. L. Koshkarov. Method of steepest descent for path integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 102 (1995) no. 2, pp. 210-216. http://geodesic.mathdoc.fr/item/TMF_1995_102_2_a3/