Mean energy and binary distribution function in the ground state of Bose systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 2, pp. 263-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method proposed earlier by the author for Fermi systems is applied to systems of interacting Bose particles. The energy of the ground state is represented in the form of expansions for weakly nonideal systems and in the form of approximating expressions for strongly nonideal systems. The results are illustrated by a one-dimensional model with delta-functional repulsive potential between the particles, for which the energy and binary distribution function are calculated.
@article{TMF_1978_35_2_a11,
     author = {M. V. Vavrukh},
     title = {Mean energy and binary distribution function in the ground state of {Bose} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--272},
     year = {1978},
     volume = {35},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_35_2_a11/}
}
TY  - JOUR
AU  - M. V. Vavrukh
TI  - Mean energy and binary distribution function in the ground state of Bose systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 263
EP  - 272
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_35_2_a11/
LA  - ru
ID  - TMF_1978_35_2_a11
ER  - 
%0 Journal Article
%A M. V. Vavrukh
%T Mean energy and binary distribution function in the ground state of Bose systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 263-272
%V 35
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1978_35_2_a11/
%G ru
%F TMF_1978_35_2_a11
M. V. Vavrukh. Mean energy and binary distribution function in the ground state of Bose systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 2, pp. 263-272. http://geodesic.mathdoc.fr/item/TMF_1978_35_2_a11/

[1] N. N. Bogoljubov, J. Phys., 9 (1947), 23

[2] M. Takahashi, Progr. Theor. Phys., 53 (1974), 386 | DOI

[3] N. N. Bogolyubov, D. N. Zubarev, ZhETF, 28 (1955), 129 | MR | Zbl

[4] D. K. Lee, E. Feenberg, Phys. Rev., A137 (1965), 731 | DOI | MR

[5] K. A. Bruecner, Phys. Rev., 156 (1967), 204 | DOI

[6] D. K. Lee, Phys. Rev., A4 (1974), 1670

[7] I. A. Vakarchuk, TMF, 18 (1974), 90 ; препринт ИТФ-72-135Р, Киев, 1972

[8] D. K. Lee, Phys. Rev., A2 (1970), 278 | DOI

[9] I. A. Vakarchuk, TMF, 23 (1975), 260

[10] M. V. Vavrukh, Ukr. fizich. zh., 13:5 (1968), 733; 18:12 (1973), 1966 | MR

[11] I. R. Yukhnovskii, Ukr. fizich. zh., 9:7 (1964), 702

[12] E. H. Lieb, W. Liniger, Phys. Rev., 130 (1963), 1605 | DOI | MR | Zbl

[13] M. V. Vavrukh, Preprint ITF-75-134R, Kiev, 1975 | MR

[14] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, «Nauka», 1971, str. 939 | MR