Conformal symmetry of the chemical elements
Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 323-334
Cet article a éte moissonné depuis la source Math-Net.Ru
The system of chemical elements is considered as a multiplet of the group $SU(2)\times S\tilde O(4,2)$, where $S\tilde O(4,2)$ is the universal covering of the conformal group. The representation is realised on the space of the two-component Fock wave functions. Atomic number is treated as a symmetry-breaking operator expressed in terms of observables of the conformal group. A group interpretation of chemical affinity is given involving state transition operators analogous to spin operators $J_{\pm}$ and Okubo operators of the $SU(6)$-theory. The theory results in a table of elements.
@article{TMF_1975_22_3_a4,
author = {A. I. Fet},
title = {Conformal symmetry of the chemical elements},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--334},
year = {1975},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a4/}
}
A. I. Fet. Conformal symmetry of the chemical elements. Teoretičeskaâ i matematičeskaâ fizika, Tome 22 (1975) no. 3, pp. 323-334. http://geodesic.mathdoc.fr/item/TMF_1975_22_3_a4/
[1] Yu. B. Rumer, A. I. Fet, TMF, 9 (1971), 203
[2] B. G. Konopelchenko, Preprint In-ta yadernoi fiziki SO AN SSSR, Novosibirsk, 1972
[3] Yu. B. Rumer, A. I. Fet, Teoriya unitarnoi simmetrii, M., 1970 | MR
[4] Tsu Yao, J. Math. Phys., 8 (1967), 1931 | DOI
[5] Tsu Yao, J. Math. Phys., 9 (1968), 1615 | DOI | MR
[6] A. O. Barut, H. Kleinert, Phys. Rev., 156 (1967), 1541 | DOI
[7] A. O. Barut, H. Keinert, Phys. Rev., 157 (1967), 1180 | DOI
[8] I. A. Malkin, V. I. Manko, Pisma ZhETF, 2 (1965), 230 | MR
[9] I. A. Malkin, V. I. Manko, YaF, 9 (1969), 184
[10] V. A. Fok, Izv. AN SSSR, otd. matem. i estestv. nauk, 1935, no. 2, 169 | MR
[11] M. Beg, V. Singh, Phys. Rev. Lett., 13 (1964), 113 | DOI | MR