@article{TIMM_2004_10_2_a3,
author = {I. I. Eremin},
title = {Fej\'er processes: synthesis and randomization},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {58--68},
year = {2004},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2004_10_2_a3/}
}
I. I. Eremin. Fejér processes: synthesis and randomization. Trudy Instituta matematiki i mehaniki, Mathematical control theory, differential games, Tome 10 (2004) no. 2, pp. 58-68. http://geodesic.mathdoc.fr/item/TIMM_2004_10_2_a3/
[1] Eremin I. I., “Obobschenie relaksatsionnogo metoda Motskina–Agmona”, Uspekhi mat. nauk, 20:2(122) (1965.), 183–187 | MR | Zbl
[2] Eremin I. I., “Relaksatsionnyi metod resheniya sistem neravenstv s vypuklymi funktsiyami v levykh chastyakh”, Dokl. AN SSSR, 160:5 (1965), 994–996 | MR | Zbl
[3] Eremin I. I., “K obschei teorii feierovskikh otobrazhenii”, Matem. zap. UrGU, 7:2 (1969), 50–58 | MR | Zbl
[4] Eremin I. I., “Primenenie metoda feierovskikh priblizhenii k resheniyu zadach vypuklogo programmirovaniya s negladkimi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 9:5 (1969), 1153–1160 | MR | Zbl
[5] Motzkin T. S., Schoenberg J. J., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 393–404 | MR | Zbl
[6] Agmon S., “The relaxation method for linear inequalities”, Canad. J. Math., 6:3 (1954), 382–392 | MR | Zbl
[7] Eremin I. I., Patsko S. V., “Fejer Processes for Infinite Systems of Convex Inequalities”, Proc. Steklov Inst. Math., Suppl. 1, 2002, S32–S51 | MR
[8] Eremin I. I., Mazurov V. D., Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979, 288 pp. | MR