The metallic means family and renormalization group techniques
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 6 (2000) no. 1, pp. 173-189

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the new family of Metallic Means (MMF), being the most paramount of its members, the Golden Mean $\phi$ and, in the second place, the Silver Mean $\sigma_{Ag}$. Why do we call them a family? Because, besides carrying the name of a metal–the Golden Mean, the Silver Mean, the Copper Mean, the Bronze Mean, the Nickel Mean–they enjoy common mathematical properties that attach a fundamental importance to them in modern investigations about the search of universal roads to chaos. Among these applications, we have chosen the analysis of the main renormalization group techniques, which have the purpose of getting the quantitative microcharacterization of the transition from order to quantum chaos.
@article{TIMM_2000_6_1_a11,
     author = {V. W. de Spinadel},
     title = {The metallic means family and renormalization group techniques},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {173--189},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2000_6_1_a11/}
}
TY  - JOUR
AU  - V. W. de Spinadel
TI  - The metallic means family and renormalization group techniques
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2000
SP  - 173
EP  - 189
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2000_6_1_a11/
LA  - en
ID  - TIMM_2000_6_1_a11
ER  - 
%0 Journal Article
%A V. W. de Spinadel
%T The metallic means family and renormalization group techniques
%J Trudy Instituta matematiki i mehaniki
%D 2000
%P 173-189
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2000_6_1_a11/
%G en
%F TIMM_2000_6_1_a11
V. W. de Spinadel. The metallic means family and renormalization group techniques. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 6 (2000) no. 1, pp. 173-189. http://geodesic.mathdoc.fr/item/TIMM_2000_6_1_a11/