On global stability of double and connected pendulums
Theoretical and applied mechanics, Tome 12 (1986) no. 1, p. 79 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Differential equations describing dynamics of double and connected pendulums are considered. For these equations the method of non-local reduction si developed. In several cases it allows to reduce the stability problem of pendulum with two degrees of freedom to studying the equation of pendulum with one degree of freedom. The method of non-local reduction gives conditions when pendulums asympthoticaly approach the equilibrium point for any initial conditions.
@article{TAM_1986_12_1_a9,
     author = {G. A. Leonov and R. I. Alidema},
     title = {On global stability of double and connected pendulums},
     journal = {Theoretical and applied mechanics},
     pages = {79 },
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1986_12_1_a9/}
}
TY  - JOUR
AU  - G. A. Leonov
AU  - R. I. Alidema
TI  - On global stability of double and connected pendulums
JO  - Theoretical and applied mechanics
PY  - 1986
SP  - 79 
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1986_12_1_a9/
LA  - en
ID  - TAM_1986_12_1_a9
ER  - 
%0 Journal Article
%A G. A. Leonov
%A R. I. Alidema
%T On global stability of double and connected pendulums
%J Theoretical and applied mechanics
%D 1986
%P 79 
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1986_12_1_a9/
%G en
%F TAM_1986_12_1_a9
G. A. Leonov; R. I. Alidema. On global stability of double and connected pendulums. Theoretical and applied mechanics, Tome 12 (1986) no. 1, p. 79 . http://geodesic.mathdoc.fr/item/TAM_1986_12_1_a9/