Optimal motion control of nonholonomic mechanical systems
Theoretical and applied mechanics, Tome 12 (1986) no. 1, p. 111 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we prove the connection between the maximum principle of optimal control theory and Hamilton's integral variational principle of classical mechanics. By conjugating the differential equations of motion and the displacement equation using the function $X$, it is shown that the maximum of the Hamilton action for nonholonomic mechanical systems is reduced to the maximum of the function.
@article{TAM_1986_12_1_a12,
     author = {Vera Po\v{z}ega},
     title = {Optimal motion control of nonholonomic mechanical systems},
     journal = {Theoretical and applied mechanics},
     pages = {111 },
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1986_12_1_a12/}
}
TY  - JOUR
AU  - Vera Požega
TI  - Optimal motion control of nonholonomic mechanical systems
JO  - Theoretical and applied mechanics
PY  - 1986
SP  - 111 
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1986_12_1_a12/
LA  - en
ID  - TAM_1986_12_1_a12
ER  - 
%0 Journal Article
%A Vera Požega
%T Optimal motion control of nonholonomic mechanical systems
%J Theoretical and applied mechanics
%D 1986
%P 111 
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1986_12_1_a12/
%G en
%F TAM_1986_12_1_a12
Vera Požega. Optimal motion control of nonholonomic mechanical systems. Theoretical and applied mechanics, Tome 12 (1986) no. 1, p. 111 . http://geodesic.mathdoc.fr/item/TAM_1986_12_1_a12/