Point mapping differential equations
Theoretical and applied mechanics, Tome 3 (1977) no. 1, p. 119 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This method, based on the ideas of Poincare, Birkhoff and Lewis, plays an increasing role in modern practice, especially in pendulum oscillations with parametric excitations of a non-linear type, in satellite oscillations with variations in moments of inertia, in the movement of particles in a magnetic field, etc. 14 coefficients were calculated and their solutions were also given.
@article{TAM_1977_3_1_a14,
     author = {Mirko Stojanovi\'c},
     title = {Point mapping differential equations},
     journal = {Theoretical and applied mechanics},
     pages = {119 },
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1977_3_1_a14/}
}
TY  - JOUR
AU  - Mirko Stojanović
TI  - Point mapping differential equations
JO  - Theoretical and applied mechanics
PY  - 1977
SP  - 119 
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1977_3_1_a14/
LA  - en
ID  - TAM_1977_3_1_a14
ER  - 
%0 Journal Article
%A Mirko Stojanović
%T Point mapping differential equations
%J Theoretical and applied mechanics
%D 1977
%P 119 
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1977_3_1_a14/
%G en
%F TAM_1977_3_1_a14
Mirko Stojanović. Point mapping differential equations. Theoretical and applied mechanics, Tome 3 (1977) no. 1, p. 119 . http://geodesic.mathdoc.fr/item/TAM_1977_3_1_a14/