Some aspects of the nonlinear elastic behavior and instability of reticulated shell-type systems
Theoretical and applied mechanics, Tome 2 (1976) no. 1, p. 15 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A new general numerical calculation method was developed for the calculation of the lowest statically and kinematically permissible critical end states of statically high and specific surface structures made of spatial elements (consisting of steel rods), taking into account finite deformations and a quasi-pinched knot of the rod elements. Furthermore, an optimization of these structures in their branched post-critical equilibrium positions enables a reduction of the sensitivity of such systems to the geometric imperfections.
@article{TAM_1976_2_1_a2,
     author = {Y J. Britvec and D. Nardini},
     title = {Some aspects of the nonlinear elastic behavior and instability of reticulated shell-type systems},
     journal = {Theoretical and applied mechanics},
     pages = {15 },
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a2/}
}
TY  - JOUR
AU  - Y J. Britvec
AU  - D. Nardini
TI  - Some aspects of the nonlinear elastic behavior and instability of reticulated shell-type systems
JO  - Theoretical and applied mechanics
PY  - 1976
SP  - 15 
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a2/
LA  - en
ID  - TAM_1976_2_1_a2
ER  - 
%0 Journal Article
%A Y J. Britvec
%A D. Nardini
%T Some aspects of the nonlinear elastic behavior and instability of reticulated shell-type systems
%J Theoretical and applied mechanics
%D 1976
%P 15 
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a2/
%G en
%F TAM_1976_2_1_a2
Y J. Britvec; D. Nardini. Some aspects of the nonlinear elastic behavior and instability of reticulated shell-type systems. Theoretical and applied mechanics, Tome 2 (1976) no. 1, p. 15 . http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a2/