On a discrete model of an unstationary linear system
Theoretical and applied mechanics, Tome 2 (1976) no. 1, p. 85 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The paper considers the motion of a system whose state can be represented by the equations \[ \dot x=A(t)x+B(t)u \] Here it is shown how the approximate method for determining the fundamental matrix can be used to find the matrix $E(t_k)$ and $F(t_k)$ in discrete models \[ x(t_{k+1})=E(t_k)x(t_k)+F(t_k)u(t_k). \]
@article{TAM_1976_2_1_a11,
     author = {Du\v{s}an J. Miki\v{c}i\'c},
     title = {On a discrete model of an unstationary linear system},
     journal = {Theoretical and applied mechanics},
     pages = {85 },
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a11/}
}
TY  - JOUR
AU  - Dušan J. Mikičić
TI  - On a discrete model of an unstationary linear system
JO  - Theoretical and applied mechanics
PY  - 1976
SP  - 85 
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a11/
LA  - en
ID  - TAM_1976_2_1_a11
ER  - 
%0 Journal Article
%A Dušan J. Mikičić
%T On a discrete model of an unstationary linear system
%J Theoretical and applied mechanics
%D 1976
%P 85 
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a11/
%G en
%F TAM_1976_2_1_a11
Dušan J. Mikičić. On a discrete model of an unstationary linear system. Theoretical and applied mechanics, Tome 2 (1976) no. 1, p. 85 . http://geodesic.mathdoc.fr/item/TAM_1976_2_1_a11/