Dual Garside Structure of Braids and Free Cumulants of Products
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, Tome 72 (2014-2015)
    
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              We count the n-strand braids whose normal decomposition has length at most 2 in the dual braid monoid~Bn+* by reducing the question to a computation of free cumulants for a product of independent variables, for which we establish a general formula. 
 
        
      
@article{SLC_2014-2015_72_a1,
     author = {Patrick Dehornoy and Philippe Biane},
     title = {Dual {Garside} {Structure} of {Braids} and {Free} {Cumulants} of {Products}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {72},
     year = {2014-2015},
     url = {http://geodesic.mathdoc.fr/item/SLC_2014-2015_72_a1/}
}
                      
                      
                    Patrick Dehornoy; Philippe Biane. Dual Garside Structure of Braids and Free Cumulants of Products. Séminaire lotharingien de combinatoire, Tome 72 (2014-2015). http://geodesic.mathdoc.fr/item/SLC_2014-2015_72_a1/
