Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2006_3_a27, author = {O. V. Borodin and A. N. Glebov and T. R. Jensen and A. Raspaud}, title = {Planar graphs without triangles adjacent to cycles of length from~$3$ to~$9$ are $3$-colorable}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {428--440}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a27/} }
TY - JOUR AU - O. V. Borodin AU - A. N. Glebov AU - T. R. Jensen AU - A. Raspaud TI - Planar graphs without triangles adjacent to cycles of length from~$3$ to~$9$ are $3$-colorable JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2006 SP - 428 EP - 440 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a27/ LA - en ID - SEMR_2006_3_a27 ER -
%0 Journal Article %A O. V. Borodin %A A. N. Glebov %A T. R. Jensen %A A. Raspaud %T Planar graphs without triangles adjacent to cycles of length from~$3$ to~$9$ are $3$-colorable %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2006 %P 428-440 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a27/ %G en %F SEMR_2006_3_a27
O. V. Borodin; A. N. Glebov; T. R. Jensen; A. Raspaud. Planar graphs without triangles adjacent to cycles of length from~$3$ to~$9$ are $3$-colorable. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 428-440. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a27/