Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2006_3_a27, author = {O. V. Borodin and A. N. Glebov and T. R. Jensen and A. Raspaud}, title = {Planar graphs without triangles adjacent to cycles of length from~$3$ to~$9$ are $3$-colorable}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {428--440}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a27/} }
TY - JOUR AU - O. V. Borodin AU - A. N. Glebov AU - T. R. Jensen AU - A. Raspaud TI - Planar graphs without triangles adjacent to cycles of length from~$3$ to~$9$ are $3$-colorable JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2006 SP - 428 EP - 440 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a27/ LA - en ID - SEMR_2006_3_a27 ER -
%0 Journal Article %A O. V. Borodin %A A. N. Glebov %A T. R. Jensen %A A. Raspaud %T Planar graphs without triangles adjacent to cycles of length from~$3$ to~$9$ are $3$-colorable %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2006 %P 428-440 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a27/ %G en %F SEMR_2006_3_a27
O. V. Borodin; A. N. Glebov; T. R. Jensen; A. Raspaud. Planar graphs without triangles adjacent to cycles of length from~$3$ to~$9$ are $3$-colorable. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 428-440. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a27/
[1] H. L. Abbott and B. Zhou, “On small faces in 4-critical graphs”, Ars. Combin., 32 (1991), 203–207 | MR | Zbl
[2] O. V. Borodin, “To the paper of H. L. Abbott and B. Zhou on 4-critical planar graphs”, Ars Combinatoria, 43 (1996), 191–192 | MR | Zbl
[3] O. V. Borodin, “Structural properties of plane graphs without adjacent triangles and an application to 3-colorings”, J. of Graph Theory, 21:2 (1996), 183–186 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[4] O. V. Borodin and A. Raspaud, “A Sufficient Condition for Planar Graphs to be 3-Colorable”, J. of Combin. Theory B, 88 (2003), 17–27 | DOI | MR | Zbl
[5] H. Grötzsch, “Ein Dreifarbenzatz für dreikreisfreie Netze auf der Kugel”, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 8 (1959), 109–120 | MR
[6] T. R. Jensen and B. Toft, Graph coloring problems, Wiley Interscience, 1995 | MR
[7] D. P. Sanders and Y. Zhao, “A note on the three color problem”, Graphs and Combinatorics, 11 (1995), 91–94 | DOI | MR | Zbl
[8] R. Steinberg, “The state of the three color problem”, Quo Vadis, Graph Theory?, Annals of Discrete Math., 55, eds. J. Gimbel, J. W. Kennedy and L. V. Quintas (eds.), 1993, 211–248 | MR | Zbl