Voir la notice de l'acte provenant de la source Numdam
We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term (which does not share the quadratic aspect) in the limit, then, the lack of bounds which can be handled with homogeneous Morrey-Campanato estimates, and finally the problem of uniqueness which, at several stage of the proof, is related to outgoing conditions at infinity.
Benamou, Jean-David 1 ; Castella, François 2 ; Katsaounis, Thodoros 3 ; Perthame, Benoît 4
@article{SEDP_1999-2000____A5_0, author = {Benamou, Jean-David and Castella, Fran\c{c}ois and Katsaounis, Thodoros and Perthame, Beno{\^\i}t}, title = {High {Frequency} limit of the {Helmholtz} {Equations}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:5}, pages = {1--25}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1999-2000}, zbl = {02124202}, mrnumber = {1813168}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEDP_1999-2000____A5_0/} }
TY - JOUR AU - Benamou, Jean-David AU - Castella, François AU - Katsaounis, Thodoros AU - Perthame, Benoît TI - High Frequency limit of the Helmholtz Equations JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:5 PY - 1999-2000 SP - 1 EP - 25 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://geodesic.mathdoc.fr/item/SEDP_1999-2000____A5_0/ LA - en ID - SEDP_1999-2000____A5_0 ER -
%0 Journal Article %A Benamou, Jean-David %A Castella, François %A Katsaounis, Thodoros %A Perthame, Benoît %T High Frequency limit of the Helmholtz Equations %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:5 %D 1999-2000 %P 1-25 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://geodesic.mathdoc.fr/item/SEDP_1999-2000____A5_0/ %G en %F SEDP_1999-2000____A5_0
Benamou, Jean-David; Castella, François; Katsaounis, Thodoros; Perthame, Benoît. High Frequency limit of the Helmholtz Equations. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1999-2000), Exposé no. 5, 25 p. http://geodesic.mathdoc.fr/item/SEDP_1999-2000____A5_0/
[1] S. Agmon, L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, J. Analyse Math., 30 (1976), 1–38. | Zbl | MR
[2] J.A. Barcelo, A. Ruiz, L. Vega, Weighted estimates for Helmholtz equation and some applications, J. of Funct. Anal. , 150 (1997), 356–382. | Zbl | MR
[3] J.-D. Benamou, Direct computation of multi-valued phase-space solutions of Hamilton-Jacobi equations, to appear in Comm. Pure and Appl. Math. | Zbl | MR
[4] F. Castella , On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation, Math. Mod. An. Num. 33, N. 2 (1999), 329–350. | Zbl | MR | mathdoc-id
[5] F. Castella, P. Degond, From the Von-Neumann equation to the Quantum Boltzmann equation in a deterministic framework, Preprint Université de Rennes 1 and C. R. Acad. Sci., t. 329, sér. I (1999), 231–236. | Zbl | MR
[6] F. Castella, B. Perthame, O. Runborg, High frequency limit in the Helmholtz equation: the case of a general source, in preparation.
[7] L. Erdös, H.T. Yau, Linear Boltzmann equation as scaling limit of the quantum Lorentz gas, Preprint (1998). | MR
[8] I. Gasser, P. Markowich, B. Perthame, Dispersion and moments lemma revisited, to appear in J. Diff. Eq. | Zbl
[9] P. Gérard, Microlocal defect measures, Comm. Partial Diff. Equations 16 (1991), 1761–1794. | Zbl | MR
[10] P. Gérard, P.A. Markowich, N.J. Mauser, F. Poupaud, Homogeneisation limits and Wigner transforms, Comm. pure and Appl. Math., 50 (1997), 321–357. | Zbl | MR
[11] J.B. Keller, R. Lewis, Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equation, in Surveys in applied mathematics, eds J.B. Keller, D.McLaughlin and G. Papanicolaou, Plenum Press, New York, 1995. | Zbl
[12] C. Kenig, G. Ponce, L. Vega, Small solutions to nonlinear Schroedinger equations, Annales de l’I.H.P., 10, (1993), 255–288. | Zbl | mathdoc-id | MR | EuDML
[13] P.-L. Lions, T. Paul, Sur les mesures de Wigner, Revista Matemática Iberoamericana, 9 (3) (1993), 553–618. | Zbl | MR | EuDML
[14] P.L.Lions, B.Perthame, Lemmes de moments, de moyenne et de dispersion. C. R. Acad. Sc t.314 (série I) (1992), 801–806. | Zbl | MR
[15] G. Papanicolaou, L. Ryzhik, Waves and Transport. IAS/ Park City Mathematics series. Volume 5 (1997). | Zbl | MR
[16] B. Perthame, L. Vega, Morrey-Campanato estimates for Helmholtz equations. J. Funct. Anal. 164(2) (1999), 340–355. | Zbl | MR
[17] B. Perthame, L. Vega, work under progress.
[18] L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Ed., 115 A (1990), 193–230. | Zbl | MR
[19] Bo Zhang, Radiation condition and limiting amplitude principle for acoustic propagators with two unbounded media, Proc. Roy. Soc. Ed., 128 A (1998), 173–192. | Zbl | MR