Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2004_9_15_1_a1, author = {Guti\'errez, Cristian E. and Lanconelli, Ermanno}, title = {Classical, viscosity and average solutions for {PDE{\textquoteright}s} with nonnegative characteristic form}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {17--28}, publisher = {mathdoc}, volume = {Ser. 9, 15}, number = {1}, year = {2004}, zbl = {1098.35052}, mrnumber = {262881}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a1/} }
TY - JOUR AU - Gutiérrez, Cristian E. AU - Lanconelli, Ermanno TI - Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2004 SP - 17 EP - 28 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a1/ LA - en ID - RLIN_2004_9_15_1_a1 ER -
%0 Journal Article %A Gutiérrez, Cristian E. %A Lanconelli, Ermanno %T Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2004 %P 17-28 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a1/ %G en %F RLIN_2004_9_15_1_a1
Gutiérrez, Cristian E.; Lanconelli, Ermanno. Classical, viscosity and average solutions for PDE’s with nonnegative characteristic form. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 15 (2004) no. 1, pp. 17-28. http://geodesic.mathdoc.fr/item/RLIN_2004_9_15_1_a1/
[1] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptic dégénérés. Ann. Inst. Fourier (Grenoble), 19, 1969, 277-304. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[2] M. BRELOT et al. (eds.), Séminaire de théorie du potentiel, LNM 713. Berlin-Heidelberg-New York 1979.
[3] Harnack’s inequality for sum of squares of vector fields plus a potential. Amer. J. Math., 115(3), 1993, 699-734. | DOI | MR | Zbl
- - ,[4] An approximate Gauss mean value theorem. Pacific J. Math., 14, 1964, 513-516. | fulltext mini-dml | MR | Zbl
,[5] A mean value theorem for the heat equation. Proc. Amer. Math. Soc., 17, 1966, 6-11. | MR | Zbl
,[6] Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type. Trans. Amer. Math. Soc., 321(2), 1990, 775-792. | DOI | MR | Zbl
- ,[7] Harmonicity of functions satisfying a weak form of the mean value property. Arch. Math. (Basel), 76, 2001, 283-291. | DOI | MR | Zbl
,[8] The mean value property and the maximum principle for second order parabolic equations. Dokl. Akad. Nauk SSSR, 242(3), 1978, 529-532. | MR | Zbl
,[9] On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino, 52(1), 1994, 29-63. | MR | Zbl
- ,[10] Superparabolic functions related to second order hypoelliptic operators. Potential Anal., 11(3), 1999, 303-323. | DOI | MR | Zbl
- ,[11] Approximation of the solutions to the first boundary value problem for parabolic equations. Confer. Sem. Mat. Univ. Bari, 154, 1978, 26 pp. | MR | Zbl
,[12] Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico. Rend. Sem. Mat. Univ. Padova, 23, 1954, 422-434. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[13] Elliptic (second-order) partial differential equations with measurable coefficients and approximating integral equations. Advances in Math., 19(1), 1976, 48-105. | MR
- ,[14] Maximum principle for viscosity sub solutions and viscosity sub solutions of the Laplacian. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 213-217. | fulltext bdim | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[15] A note on a generalized form of the Laplacian and of sub-Laplacians. Arch. Math. (Basel), 80, 2003, 516-524. | DOI | MR | Zbl
,[16] A theory of subtemperatures in several variables. Proc. London Math. Soc., 26(3), 1973, 385-417. | MR | Zbl
,