Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_2003_9_14_4_a1, author = {Montefalcone, Francescopaolo}, title = {Sets of finite perimeter associated with vector fields and polyhedral approximation}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {279--295}, publisher = {mathdoc}, volume = {Ser. 9, 14}, number = {4}, year = {2003}, zbl = {1072.49031}, mrnumber = {1823840}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/} }
TY - JOUR AU - Montefalcone, Francescopaolo TI - Sets of finite perimeter associated with vector fields and polyhedral approximation JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2003 SP - 279 EP - 295 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/ LA - en ID - RLIN_2003_9_14_4_a1 ER -
%0 Journal Article %A Montefalcone, Francescopaolo %T Sets of finite perimeter associated with vector fields and polyhedral approximation %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2003 %P 279-295 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/ %G en %F RLIN_2003_9_14_4_a1
Montefalcone, Francescopaolo. Sets of finite perimeter associated with vector fields and polyhedral approximation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 4, pp. 279-295. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/
[1] Some Fine Properties of Sets of Finite Perimeter in Alfhors Regular Metric Measure Spaces. Advances in Math., 159, 2001, 51-67. | DOI | MR | Zbl
,[2] Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press, 2000. | MR | Zbl
- - ,[3] Rectifiable sets in metric and Banach spaces. Math. Annalen, 318, 2000, 527-555. | DOI | MR | Zbl
- ,[4] Current in metric spaces. Acta Math., 185, 2000, 1-80. | DOI | MR | Zbl
- ,[5] Sobolev inequality on Homogeneous spaces. Potential Anal., 4, 1995, 311-324. | DOI | MR | Zbl
- ,[6] Misura ed integrazione sugli insiemi dimensionalmente orientati. Nota I, Nota II. Atti Acc. Lincei Rend. fis., s. 8, v. 12, 1952, 3-11, 137-146. | MR | Zbl
,[7] The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm. Anal. Geom., 2, 1994, 203-215. | MR | Zbl
- - ,[8] Differentiability of Lipschitz functions on metric measure spaces. Geometry and Functional Analysis, 9, 1999, 428-517. | DOI | MR | Zbl
,[9] Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure. Oxford University Press, 1997. | MR | Zbl
- ,[10] Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio ad $r$ dimensioni. Ann. Mat. Pura Appl., (4), 36, 1954, 191-213. | MR | Zbl
,[11] Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata. Manuscript, 1995.
,[12] Un progetto di teoria delle correnti, forme differenziali, varietà non orientate in spazi metrici. In: M. CHICCO et al. (eds.), Variational methods, non linear analysis and differential equations in honour of J.P. Cecconi (Genova 1993). ECIG, Genova 1994, 67-71.
,[13] Geometric Measure Theory. Springer-Verlag, New York 1969. | MR | Zbl
,[14] Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300, 1994, 557-571. | fulltext EuDML | DOI | MR | Zbl
- - ,[15] Representation formulas and weighted Poincaré inequalities for Hörmander vector fields. Ann. Inst. Fourier (Grenoble), 45, 1995, 577-604. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- - ,[16] Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston Journal of Math., vol. 22, 4, 1996, 859-889. | MR | Zbl
- - ,[17] Rectifiability and Perimeter in the Heisenberg Group. Math. Annalen, 321, 2001, 479-531. | DOI | MR | Zbl
- - ,[18] Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144. | DOI | MR | Zbl
- ,[19] Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston 1985. | MR | Zbl
,[20] Carnot-Carathéodory spaces seen from within. In: A. BELLAÏCHE - J.-J. RISLER (eds.), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser Verlag, Basel 1996, 79-323. | MR | Zbl
,[21] Functions of bounded variations on good metric spaces. Forhcoming 2000. | Zbl
,[22] Surface measures in Carnot-Carathéodory spaces. Calc. Var. and PDE, 13, no. 3, 2001, 339-376. | DOI | MR | Zbl
- ,[23] On Besicovitch 1/2-problem. J. London Math. Soc., 45, 1992, 179-287. | Zbl
- ,