Sets of finite perimeter associated with vector fields and polyhedral approximation
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 4, pp. 279-295
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $X = X_{1}, \cdots, X_{m}$ be a family of bounded Lipschitz continuous vector fields on $\mathbb{R}^{n}$. In this paper we prove that if $E$ is a set of finite $X$-perimeter then his $X$-perimeter is the limit of the $X$-perimeters of a sequence of euclidean polyhedra approximating $E$ in $L^{1}$-norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.
@article{RLIN_2003_9_14_4_a1,
author = {Montefalcone, Francescopaolo},
title = {Sets of finite perimeter associated with vector fields and polyhedral approximation},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {279--295},
publisher = {mathdoc},
volume = {Ser. 9, 14},
number = {4},
year = {2003},
zbl = {1072.49031},
mrnumber = {MR2104216},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/}
}
TY - JOUR AU - Montefalcone, Francescopaolo TI - Sets of finite perimeter associated with vector fields and polyhedral approximation JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 2003 SP - 279 EP - 295 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/ LA - en ID - RLIN_2003_9_14_4_a1 ER -
%0 Journal Article %A Montefalcone, Francescopaolo %T Sets of finite perimeter associated with vector fields and polyhedral approximation %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 2003 %P 279-295 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/ %G en %F RLIN_2003_9_14_4_a1
Montefalcone, Francescopaolo. Sets of finite perimeter associated with vector fields and polyhedral approximation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 4, pp. 279-295. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/