Sets of finite perimeter associated with vector fields and polyhedral approximation
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 4, pp. 279-295.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $X = X_{1}, \cdots, X_{m}$ be a family of bounded Lipschitz continuous vector fields on $\mathbb{R}^{n}$. In this paper we prove that if $E$ is a set of finite $X$-perimeter then his $X$-perimeter is the limit of the $X$-perimeters of a sequence of euclidean polyhedra approximating $E$ in $L^{1}$-norm. This extends to Carnot-Carathéodory geometry a classical theorem of E. De Giorgi.
Sia data in $\mathbb{R}^{n}$ una m-upla $X = X_{1}, \cdots, X_{m}$ di campi vettoriali lipschitziani e limitati. In questo lavoro dimostriamo che se $E$ è un insieme di $X$-perimetro finito allora l’$X$-perimetro di $E$ è il limite degli $X$-perimetri di una successione di poliedrali euclidee approssimanti $E$ in norma $L^{1}$. Questo risultato estende alle geometrie di tipo Carnot-Carathéodory un classico teorema di E. De Giorgi.
@article{RLIN_2003_9_14_4_a1,
     author = {Montefalcone, Francescopaolo},
     title = {Sets of finite perimeter associated with vector fields and polyhedral approximation},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {279--295},
     publisher = {mathdoc},
     volume = {Ser. 9, 14},
     number = {4},
     year = {2003},
     zbl = {1072.49031},
     mrnumber = {1823840},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/}
}
TY  - JOUR
AU  - Montefalcone, Francescopaolo
TI  - Sets of finite perimeter associated with vector fields and polyhedral approximation
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 2003
SP  - 279
EP  - 295
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/
LA  - en
ID  - RLIN_2003_9_14_4_a1
ER  - 
%0 Journal Article
%A Montefalcone, Francescopaolo
%T Sets of finite perimeter associated with vector fields and polyhedral approximation
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 2003
%P 279-295
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/
%G en
%F RLIN_2003_9_14_4_a1
Montefalcone, Francescopaolo. Sets of finite perimeter associated with vector fields and polyhedral approximation. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 14 (2003) no. 4, pp. 279-295. http://geodesic.mathdoc.fr/item/RLIN_2003_9_14_4_a1/

[1] L. Ambrosio, Some Fine Properties of Sets of Finite Perimeter in Alfhors Regular Metric Measure Spaces. Advances in Math., 159, 2001, 51-67. | DOI | MR | Zbl

[2] L. Ambrosio - N. Fusco - D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford University Press, 2000. | MR | Zbl

[3] L. Ambrosio - B. Kirchheim, Rectifiable sets in metric and Banach spaces. Math. Annalen, 318, 2000, 527-555. | DOI | MR | Zbl

[4] L. Ambrosio - B. Kirchheim, Current in metric spaces. Acta Math., 185, 2000, 1-80. | DOI | MR | Zbl

[5] M. Biroli - U. Mosco, Sobolev inequality on Homogeneous spaces. Potential Anal., 4, 1995, 311-324. | DOI | MR | Zbl

[6] R. Caccioppoli, Misura ed integrazione sugli insiemi dimensionalmente orientati. Nota I, Nota II. Atti Acc. Lincei Rend. fis., s. 8, v. 12, 1952, 3-11, 137-146. | MR | Zbl

[7] L. Capogna - D. Danielli - N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Comm. Anal. Geom., 2, 1994, 203-215. | MR | Zbl

[8] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces. Geometry and Functional Analysis, 9, 1999, 428-517. | DOI | MR | Zbl

[9] G. David - S. Semmes, Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure. Oxford University Press, 1997. | MR | Zbl

[10] E. De Giorgi, Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio ad $r$ dimensioni. Ann. Mat. Pura Appl., (4), 36, 1954, 191-213. | MR | Zbl

[11] E. De Giorgi, Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata. Manuscript, 1995.

[12] E. De Giorgi, Un progetto di teoria delle correnti, forme differenziali, varietà non orientate in spazi metrici. In: M. CHICCO et al. (eds.), Variational methods, non linear analysis and differential equations in honour of J.P. Cecconi (Genova 1993). ECIG, Genova 1994, 67-71.

[13] H. Federer, Geometric Measure Theory. Springer-Verlag, New York 1969. | MR | Zbl

[14] B. Franchi - S. Gallot - R.L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300, 1994, 557-571. | fulltext EuDML | DOI | MR | Zbl

[15] B. Franchi - G. Lu - R.L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields. Ann. Inst. Fourier (Grenoble), 45, 1995, 577-604. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[16] B. Franchi - R. Serapioni - F. Serra Cassano, Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston Journal of Math., vol. 22, 4, 1996, 859-889. | MR | Zbl

[17] B. Franchi - R. Serapioni - F. Serra Cassano, Rectifiability and Perimeter in the Heisenberg Group. Math. Annalen, 321, 2001, 479-531. | DOI | MR | Zbl

[18] N. Garofalo - D.M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144. | DOI | MR | Zbl

[19] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston 1985. | MR | Zbl

[20] M. Gromov, Carnot-Carathéodory spaces seen from within. In: A. BELLAÏCHE - J.-J. RISLER (eds.), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser Verlag, Basel 1996, 79-323. | MR | Zbl

[21] M. Miranda Jr., Functions of bounded variations on good metric spaces. Forhcoming 2000. | Zbl

[22] R. Monti - F. Serra Cassano, Surface measures in Carnot-Carathéodory spaces. Calc. Var. and PDE, 13, no. 3, 2001, 339-376. | DOI | MR | Zbl

[23] D. Preiss - J. Tisêr, On Besicovitch 1/2-problem. J. London Math. Soc., 45, 1992, 179-287. | Zbl