Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1989_8_83_1_a45, author = {Redi, Carlo Alberto and Garagna, Silvia and Capanna, Ernesto}, title = {Satellite {DNA} and chromosome translocations: a hypothesis regarding {{\guillemotleft}Robertsonian{\guillemotright}} chromosome formation}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {319--326}, publisher = {mathdoc}, volume = {Ser. 8, 83}, number = {1}, year = {1989}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a45/} }
TY - JOUR AU - Redi, Carlo Alberto AU - Garagna, Silvia AU - Capanna, Ernesto TI - Satellite DNA and chromosome translocations: a hypothesis regarding «Robertsonian» chromosome formation JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1989 SP - 319 EP - 326 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a45/ LA - en ID - RLINA_1989_8_83_1_a45 ER -
%0 Journal Article %A Redi, Carlo Alberto %A Garagna, Silvia %A Capanna, Ernesto %T Satellite DNA and chromosome translocations: a hypothesis regarding «Robertsonian» chromosome formation %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1989 %P 319-326 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a45/ %G en %F RLINA_1989_8_83_1_a45
Redi, Carlo Alberto; Garagna, Silvia; Capanna, Ernesto. Satellite DNA and chromosome translocations: a hypothesis regarding «Robertsonian» chromosome formation. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 319-326. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a45/
[1] Causes and consequences of Robertsonian exchange. Chromosoma, 52: 123-136.
and , 1975.[2] Karyotype variability and chromosome transilience in rodents: the case of the genus Mus. In: Evolutionary relationships among rodents: a multidiscipUnary analysis. P.W. Luckett and J.-L. Hartenberger, eds., pp. 643-671, Plenum Press, New York.
, 1985.[3] Robertsonian hétérozygotes in the house mouse and the fate of their germ cells. In: The cytogenetics of Mammalian autosomal rearrangements. A. Daniel éd., pp. 315-359, Alan R. Liss, New York.
and , 1988.[4] DNA loss during Robertsonian fusion in studies of the Tobacco mouse. Nature New Biol., 237: 199.
and , 1972.[5] Pericentromeric heterochromatin and A-T contents during Robertsonian fusion in the house mouse. Chromosoma, 94: 31-35.
, , and , 1986.[6] The molecular structure of centromeres and telomeres. Ann. Rev. Biochem., 53: 163-194.
and , 1984.[7] Telomere replication, kinetochore organizers, and satellite DNA evolution. Proc. Natl. Acad. Sci USA, 76: 4566-4570.
and , 1979.[8] Structural basis for Robertsonian translocations in man: Association of ribosomal genes in the nuclear fibrillar center in meiotic spermatocytes and oocytes. Proc. Natl. Acad. Sci. USA, 80: 5946-5950.
, , , , and , 1983.[9] Nucleolus organizer activity and the origin of Robertsonian translocations. Cytogenet. Cell Genet., 20: 40-50.
, , and , 1978.[10] Centromere organization in chromosomes of the mouse. Chromosoma, 92: 325-329.
and , 1985.[11] Chromosomal localization of mouse satellite DNA. Science, 168: 1356-1358.
and , 1971.[12] Restriction enzyme banding of mouse metaphase chromosomes. Chromosoma, 90: 128-132.
, and , 1984.[13] Characterization of distinct segments in mouse satellite DNA by restriction nucleases. Eur. J. Biochem., 73: 383-392.
and , 1977.[14] The possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations. Cytogenet. Cell Genet., 15: 41-49.
, and , 1975.[15] Centric fusion, satellite DNA and DNA polarity in mouse chromosomes. Science, 185: 1179-1181.
and , 1974.[16] Robertsonian translocations: cytology, meiosis, segregation patterns and biological conseguences of heterozygosity. In: Biology of the house mouse. R.J. Berry, éd., pp. 141-181, Academic Press, London.
and , 1981.[17] The t(14; 18) chromosome translocations involved in B-cell neoplasm result from mistakes in VDJ joining. Science, 229: 1390-1393.
, , , and , 1985.[18] Chromosomes. In: T.B. HARGREAVE (ed.), Male Infertility, pp. 144-159, Springer Verlag, Berlin-Heidelberg.
, 1983.[19] Evolution of Primate DNA organization. In: DOVER G.A. and FLAVER R.B. (eds.), Genome Evolution, pp. 113-133, Academic Press, London New York.
, and , 1982.[20] Mammalian repetitive DNA sequence in a stable Robertsonian system: II. Characterization, in situ hybridization and cross-species hybridization of DNAs in calf, sheep and goat chromosomes. Cytogenet. Cell Genet., 21: 145-167.
, and , 1978.[21] Centric fusion translocations in cattle: A review. The Veterinary record, 116: 516-518.
, 1985.[22] The transmission and activation of endogeneous mouse retroviral genomes. Trends in Genetics, 1: 331-334.
and , 1985.[23] Robertsonian numerical variation in animal speciation: Mus musculus, an emblematic model. In BARIGOZZI C. (éd.), Mechanisms of speciation, pp. 155-177, Alan R. Liss, New York.
, 1982.[24] Mitochondrial DNA evolution in mice. Genetics, 105: 681-721.
, , , and , 1983.[25] DNA family turnover and the coevolution of chromosomes. Chromosomes Today, 8: 229-240.
, , , and , 1984.