Satellite DNA and chromosome translocations: a hypothesis regarding «Robertsonian» chromosome formation
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 319-326.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A hypothesis is presented concerning the formation of «Robertsonian» metacentrics, i.e. whole chromosomal arm translocations. During DNA-synthesis the base pairing of homologous parental strands, carried by different chromosomes, produces heteroduplexes. The rearranged DNA region would then be cut off by topoisomerases, and two acrocentric chromosomes would be fused into one metacentric. The analysis of the structure of the genome of different animal groups such as Muridae, Bovidae and Primates, supports the idea that chromosomes can exchange parts, or whole arms, in sites where base sequences show a high degree of homology.
La fusione Robertsoniana (Rb) di cromosomi acrocentrici è uno degli eventi più frequenti capaci di diversificare il cariotipo. Ciononostante il meccanismo molecolare di tale evento non è ancora chiaro. Nella presente Nota viene suggerita l'ipotesi che, durante la sintesi del DNA, l'appaiamento di basi di sequenze omologhe su filamenti parentali 5' e 3' (di due diversi cromosomi le cui coordinate polari siano anti-rotate) porti alla formazione di un eteroduplex. Il taglio e la chiusura della regione di DNA riordinata (da parte di una topoisomerasi) unirebbe in un metacentrico i due cromosomi acrocentrici. L'analisi della organizzazione del genoma in relazione alla struttura del cariotipo in diversi gruppi animali da sostegno alla idea che i cromosomi possano scambiarsi parti, o intere braccia, in siti ove la sequenza di basi mostri un alto grado di omologia.
@article{RLINA_1989_8_83_1_a45,
     author = {Redi, Carlo Alberto and Garagna, Silvia and Capanna, Ernesto},
     title = {Satellite {DNA} and chromosome translocations: a hypothesis regarding {{\guillemotleft}Robertsonian{\guillemotright}} chromosome formation},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {319--326},
     publisher = {mathdoc},
     volume = {Ser. 8, 83},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a45/}
}
TY  - JOUR
AU  - Redi, Carlo Alberto
AU  - Garagna, Silvia
AU  - Capanna, Ernesto
TI  - Satellite DNA and chromosome translocations: a hypothesis regarding «Robertsonian» chromosome formation
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1989
SP  - 319
EP  - 326
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a45/
LA  - en
ID  - RLINA_1989_8_83_1_a45
ER  - 
%0 Journal Article
%A Redi, Carlo Alberto
%A Garagna, Silvia
%A Capanna, Ernesto
%T Satellite DNA and chromosome translocations: a hypothesis regarding «Robertsonian» chromosome formation
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1989
%P 319-326
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a45/
%G en
%F RLINA_1989_8_83_1_a45
Redi, Carlo Alberto; Garagna, Silvia; Capanna, Ernesto. Satellite DNA and chromosome translocations: a hypothesis regarding «Robertsonian» chromosome formation. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 319-326. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a45/

[1] John B. and Freeman M., 1975. Causes and consequences of Robertsonian exchange. Chromosoma, 52: 123-136.

[2] Capanna E., 1985. Karyotype variability and chromosome transilience in rodents: the case of the genus Mus. In: Evolutionary relationships among rodents: a multidiscipUnary analysis. P.W. Luckett and J.-L. Hartenberger, eds., pp. 643-671, Plenum Press, New York.

[3] Redi C.A. and Capanna E., 1988. Robertsonian hétérozygotes in the house mouse and the fate of their germ cells. In: The cytogenetics of Mammalian autosomal rearrangements. A. Daniel éd., pp. 315-359, Alan R. Liss, New York.

[4] Comings D.E. and Avelino E., 1972. DNA loss during Robertsonian fusion in studies of the Tobacco mouse. Nature New Biol., 237: 199.

[5] Redi C.A., Garagna S., Mazzini G. and Winking H., 1986. Pericentromeric heterochromatin and A-T contents during Robertsonian fusion in the house mouse. Chromosoma, 94: 31-35.

[6] Blackburn E.H. and Szostak J.W., 1984. The molecular structure of centromeres and telomeres. Ann. Rev. Biochem., 53: 163-194.

[7] Holmquist G.P. and Dancis B., 1979. Telomere replication, kinetochore organizers, and satellite DNA evolution. Proc. Natl. Acad. Sci USA, 76: 4566-4570.

[8] Stahl A., Luciani J.M., Hartung M., Devictor M., Bergè-Lefranc J.L. and Guichaud M., 1983. Structural basis for Robertsonian translocations in man: Association of ribosomal genes in the nuclear fibrillar center in meiotic spermatocytes and oocytes. Proc. Natl. Acad. Sci. USA, 80: 5946-5950.

[9] Miller O.J., Miller D.A., Tantravahi R. and Dev V.G., 1978. Nucleolus organizer activity and the origin of Robertsonian translocations. Cytogenet. Cell Genet., 20: 40-50.

[10] Rattner J.B. and Lin C.C., 1985. Centromere organization in chromosomes of the mouse. Chromosoma, 92: 325-329.

[11] Pardue M.L. and Gall J.G., 1971. Chromosomal localization of mouse satellite DNA. Science, 168: 1356-1358.

[12] Kaelbling M., Miller D.A. and Miller O.J., 1984. Restriction enzyme banding of mouse metaphase chromosomes. Chromosoma, 90: 128-132.

[13] Hoerz W. and Zachau H.G., 1977. Characterization of distinct segments in mouse satellite DNA by restriction nucleases. Eur. J. Biochem., 73: 383-392.

[14] Hsu T.C., Pathak S. and Chen T.R., 1975. The possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations. Cytogenet. Cell Genet., 15: 41-49.

[15] Lin M.S. and Davidson R.L., 1974. Centric fusion, satellite DNA and DNA polarity in mouse chromosomes. Science, 185: 1179-1181.

[16] Gropp A. and Winking H., 1981. Robertsonian translocations: cytology, meiosis, segregation patterns and biological conseguences of heterozygosity. In: Biology of the house mouse. R.J. Berry, éd., pp. 141-181, Academic Press, London.

[17] Tsujimoto Y., Gorham J., Cossman J., Jaffe E. and Croce C.M., 1985. The t(14; 18) chromosome translocations involved in B-cell neoplasm result from mistakes in VDJ joining. Science, 229: 1390-1393.

[18] Chandley A., 1983. Chromosomes. In: T.B. HARGREAVE (ed.), Male Infertility, pp. 144-159, Springer Verlag, Berlin-Heidelberg.

[19] Gillespie D., Donehower L. and Strayer D., 1982. Evolution of Primate DNA organization. In: DOVER G.A. and FLAVER R.B. (eds.), Genome Evolution, pp. 113-133, Academic Press, London New York.

[20] Kurnit D.M., Brown F.L. and Majo J.J., 1978. Mammalian repetitive DNA sequence in a stable Robertsonian system: II. Characterization, in situ hybridization and cross-species hybridization of DNAs in calf, sheep and goat chromosomes. Cytogenet. Cell Genet., 21: 145-167.

[21] Long S.E., 1985. Centric fusion translocations in cattle: A review. The Veterinary record, 116: 516-518.

[22] Kozak C. and Silver J., 1985. The transmission and activation of endogeneous mouse retroviral genomes. Trends in Genetics, 1: 331-334.

[23] Capanna E., 1982. Robertsonian numerical variation in animal speciation: Mus musculus, an emblematic model. In BARIGOZZI C. (éd.), Mechanisms of speciation, pp. 155-177, Alan R. Liss, New York.

[24] Ferris S.D., Sage R.D., Prager E.M., Ritter E.M. and Wilson A.C., 1983. Mitochondrial DNA evolution in mice. Genetics, 105: 681-721.

[25] Dover G., Trick M., Strachan T., Coen E.S. and Brown S.D.M., 1984. DNA family turnover and the coevolution of chromosomes. Chromosomes Today, 8: 229-240.