@article{RLINA_1978_8_64_6_a9,
author = {Spinelli, Giancarlo},
title = {Gravitational field theory for the continuum: second order field equations},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {603--609},
year = {1978},
volume = {Ser. 8, 64},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLINA_1978_8_64_6_a9/}
}
TY - JOUR AU - Spinelli, Giancarlo TI - Gravitational field theory for the continuum: second order field equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1978 SP - 603 EP - 609 VL - 64 IS - 6 UR - http://geodesic.mathdoc.fr/item/RLINA_1978_8_64_6_a9/ LA - en ID - RLINA_1978_8_64_6_a9 ER -
%0 Journal Article %A Spinelli, Giancarlo %T Gravitational field theory for the continuum: second order field equations %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1978 %P 603-609 %V 64 %N 6 %U http://geodesic.mathdoc.fr/item/RLINA_1978_8_64_6_a9/ %G en %F RLINA_1978_8_64_6_a9
Spinelli, Giancarlo. Gravitational field theory for the continuum: second order field equations. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 64 (1978) no. 6, pp. 603-609. http://geodesic.mathdoc.fr/item/RLINA_1978_8_64_6_a9/
[1] See for example , in The Physicist's Conception of Nature, Dirac 70th anniversary volume (Dordrecht and Boston).
[2] (1961) - «Ann. Phys. (N.Y.)», 16, 96. See also (1967) - «Fortschr. Phys.», 15, 269. | DOI | MR
[3] (1970) - «Gen. Relativ. Gravit.», 1, 9. | MR
[4] and (1975) - «Phys. Rev.», 12 D, 2203. | DOI | MR
[5] and (1977) - «Nuovo Cimento», 39 B, 93.
[6] (1973) - «Boll. U.M.I.», 8 Suppl, fasc. 2, 49.
[7] We employ here point transformations, not to be confused with coordinate transformations. See for instance, (1971) - «Journ. Math. Phys.», 12, 57.
[8] and (1977) - «Nuovo Cimento», 39 B, 87.
[9] and (1962) - The Classical Theory of Fields, second edition (Oxford, 1962), Sect. 94. | MR | Zbl
[10] and (1975) - «Phys. Rev.», 12 D, 2200. | DOI | MR
[11] Directly by the definition of the deformation tensor. See for example and (1959) - Theory of Elasticity, (London) Chapt. 1. | MR
[12] Parentheses containing two indices, denote symmetrization, e.g. $\psi_{\alpha(\beta;\gamma)} = \psi_{\alpha\beta;\gamma} + \psi_{\alpha\gamma;\beta)}$. The traces of tensor are written by suppresing the repeated indices e.g. $\psi_{\sigma}^{\sigma} = \psi$. Finally $\square$ is the d'Alembertian operator i.e. $\square \psi_{\alpha\beta} = \psi_{\alpha\beta;\lambda^{\lambda}}$.
[13] (1965) - «Helv. Phys. Acta», 38, 469.
[14] (1964) - The Theoretical Significance of Experimental Relativity, (New York, N.Y.). | MR | Zbl
[15] As shown in Ref. [2] an atom put in the gravitational field, undergoes, in the linear approximation, a deformation given by a tensor $f\psi_{\alpha\beta}$. It is the same deformation to which real rods and clocks (made out of atoms) are subjected, so that a real observer does not measure a pseudo-Euclidean but a Riemannian space-time. Taking into account that the matter is made out of atoms, all the objects are deformed by gravity in the unrenormalized picture. Hence, in such space-time a variation $\delta\psi_{\alpha\beta}$ causes an increase of the deformation tensor equal to $f\delta\psi_{\alpha\beta}$.