Graphical Compositions and Weak Congruences
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 34 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Graphical compositions of equivalences were introduced (independently) by B. Jónsson and H. Werner in order to determine whether a subset of Eq$(X)$ (the set of all equivalences on the set $X$) is the set of all congruences of some algebra defined on $X$. Namely, a complete sublattice $L$ of Eq$(X)$ is the congruence lattice of some algebra defined on $X$ if and only if $L$ is closed under all graphical compositions. We generalize this result and prove that a similar characterization is possible for weak congruences (i.e., symmetric and transitive compatible relations).
Classification : 03A30 08A40
@article{PIM_1994_N_S_56_70_a4,
     author = {Miroslav Plo\v{s}\v{c}ica},
     title = {Graphical {Compositions} and {Weak} {Congruences}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {34 },
     publisher = {mathdoc},
     volume = {_N_S_56},
     number = {70},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a4/}
}
TY  - JOUR
AU  - Miroslav Ploščica
TI  - Graphical Compositions and Weak Congruences
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 34 
VL  - _N_S_56
IS  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a4/
LA  - en
ID  - PIM_1994_N_S_56_70_a4
ER  - 
%0 Journal Article
%A Miroslav Ploščica
%T Graphical Compositions and Weak Congruences
%J Publications de l'Institut Mathématique
%D 1994
%P 34 
%V _N_S_56
%N 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a4/
%G en
%F PIM_1994_N_S_56_70_a4
Miroslav Ploščica. Graphical Compositions and Weak Congruences. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 34 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a4/