On the Number of 2-factors in Rectangular Lattice Graphs
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 23
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $f_m(n)$ and $h_m(n)$ denote the number of 2-factors and
the number of connected 2-factors (Hamiltonian cycles) respectively in
a $(m-1)\times(n-1)$ grid i.e., in the labelled graph $P_m\times P_n$.
We show that for each fixed $m$ ($m>1$) the sequences
$f_m=(f_m(2),f_m(3), \dots)$ and $h_m=(h_m(2),h_m(3),\dots)$ satisfy
difference equations (linear, homogeneous, and with constant
coefficients). Furthermore, a computational method is given for finding
these difference equations together with the initial terms of the
sequence. The generating functions of $f_m$ and $h_m$ are rational
functions $\Cal F_m$ and $\Cal H_m$ respectively, and they are given
explicitly for some values of $m$.
Classification :
05C70 05C45
@article{PIM_1994_N_S_56_70_a3,
author = {Olga Bodro\v{z}a-Panti\'c and Ratko To\v{s}i\'c},
title = {On the {Number} of 2-factors in {Rectangular} {Lattice} {Graphs}},
journal = {Publications de l'Institut Math\'ematique},
pages = {23 },
publisher = {mathdoc},
volume = {_N_S_56},
number = {70},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a3/}
}
TY - JOUR AU - Olga Bodroža-Pantić AU - Ratko Tošić TI - On the Number of 2-factors in Rectangular Lattice Graphs JO - Publications de l'Institut Mathématique PY - 1994 SP - 23 VL - _N_S_56 IS - 70 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a3/ LA - en ID - PIM_1994_N_S_56_70_a3 ER -
Olga Bodroža-Pantić; Ratko Tošić. On the Number of 2-factors in Rectangular Lattice Graphs. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 23 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a3/