On Schur-convexity of Some Distribution Functions
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 111 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If $X_1,\dots,X_n$ are independent geometric random variables with parameters $p_1,\dots,p_n$ respectivelly, we prove that the function $F(p_1,\dots,p_n;t) = P(X_1+\dots+X_n\leqt)$ is Schur-concave in $(p_1,\dots,p_n)$ for every real $t$. We also give a new proof for a theorem due to P. Diaconis on Schur-convexity of distribution fuction of linear combination of two exponential random variables.
Classification : 60E15
@article{PIM_1994_N_S_56_70_a14,
     author = {Milan Merkle and Ljiljana Petrovi\'c},
     title = {On {Schur-convexity} of {Some} {Distribution} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {111 },
     publisher = {mathdoc},
     volume = {_N_S_56},
     number = {70},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a14/}
}
TY  - JOUR
AU  - Milan Merkle
AU  - Ljiljana Petrović
TI  - On Schur-convexity of Some Distribution Functions
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 111 
VL  - _N_S_56
IS  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a14/
LA  - en
ID  - PIM_1994_N_S_56_70_a14
ER  - 
%0 Journal Article
%A Milan Merkle
%A Ljiljana Petrović
%T On Schur-convexity of Some Distribution Functions
%J Publications de l'Institut Mathématique
%D 1994
%P 111 
%V _N_S_56
%N 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a14/
%G en
%F PIM_1994_N_S_56_70_a14
Milan Merkle; Ljiljana Petrović. On Schur-convexity of Some Distribution Functions. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 111 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a14/