On the Definition of a Quadratic Form
Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 35
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the first part of this paper we give a simple proof of
the following wellknown theorem [3]: If a function $q:X\to C$ satisfies
the parallelogram law and the homogeneity property $q(\lambda x)
=|\lambda|^2q(x)\;(\lambda\in C,x\in X)$, then there exists a
sesquilinear form $L:X\times X\to C$ such that $q(x)=L(x;x)\quad (x\in X)$. If $X$ is a real vector space then a quadratic form on $X$ is to be
defined as a function $q:X\to R$ the complexification
$(q_c(q_c(x+iy)=q(x)+q(y); x,y\in X)$ of which has the homogeneity
property
$
q_c(łambda z)=|łambda|^2q_c(z)\quad (łambda\in C, z\in X_c=X\times X).
$ In the second part of this paper we continue the study of quadratic
forms on modules over algebras studied in [6], [7] and [4]. We assume
as in [4] that the algebra $A$ has the identity element and that it as
the regularity property: For any $t\in A$ there exists a natural number
$n$ such that $t+n$ and $t+n+1$ are invertible in $A$.
Classification :
15A63 39B50 46C10 46K99
@article{PIM_1987_N_S_42_56_a4,
author = {Svetozar Kurepa},
title = {On the {Definition} of a {Quadratic} {Form}},
journal = {Publications de l'Institut Math\'ematique},
pages = {35 },
year = {1987},
volume = {_N_S_42},
number = {56},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/}
}
Svetozar Kurepa. On the Definition of a Quadratic Form. Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 35 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/