On the Definition of a Quadratic Form
Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 35 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the first part of this paper we give a simple proof of the following wellknown theorem [3]: If a function $q:X\to C$ satisfies the parallelogram law and the homogeneity property $q(\lambda x) =|\lambda|^2q(x)\;(\lambda\in C,x\in X)$, then there exists a sesquilinear form $L:X\times X\to C$ such that $q(x)=L(x;x)\quad (x\in X)$. If $X$ is a real vector space then a quadratic form on $X$ is to be defined as a function $q:X\to R$ the complexification $(q_c(q_c(x+iy)=q(x)+q(y); x,y\in X)$ of which has the homogeneity property $ q_c(łambda z)=|łambda|^2q_c(z)\quad (łambda\in C, z\in X_c=X\times X). $ In the second part of this paper we continue the study of quadratic forms on modules over algebras studied in [6], [7] and [4]. We assume as in [4] that the algebra $A$ has the identity element and that it as the regularity property: For any $t\in A$ there exists a natural number $n$ such that $t+n$ and $t+n+1$ are invertible in $A$.
Classification : 15A63 39B50 46C10 46K99
@article{PIM_1987_N_S_42_56_a4,
     author = {Svetozar Kurepa},
     title = {On the {Definition} of a {Quadratic} {Form}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {35 },
     publisher = {mathdoc},
     volume = {_N_S_42},
     number = {56},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/}
}
TY  - JOUR
AU  - Svetozar Kurepa
TI  - On the Definition of a Quadratic Form
JO  - Publications de l'Institut Mathématique
PY  - 1987
SP  - 35 
VL  - _N_S_42
IS  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/
LA  - en
ID  - PIM_1987_N_S_42_56_a4
ER  - 
%0 Journal Article
%A Svetozar Kurepa
%T On the Definition of a Quadratic Form
%J Publications de l'Institut Mathématique
%D 1987
%P 35 
%V _N_S_42
%N 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/
%G en
%F PIM_1987_N_S_42_56_a4
Svetozar Kurepa. On the Definition of a Quadratic Form. Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 35 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/