On the Definition of a Quadratic Form
Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 35

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the first part of this paper we give a simple proof of the following wellknown theorem [3]: If a function $q:X\to C$ satisfies the parallelogram law and the homogeneity property $q(\lambda x) =|\lambda|^2q(x)\;(\lambda\in C,x\in X)$, then there exists a sesquilinear form $L:X\times X\to C$ such that $q(x)=L(x;x)\quad (x\in X)$. If $X$ is a real vector space then a quadratic form on $X$ is to be defined as a function $q:X\to R$ the complexification $(q_c(q_c(x+iy)=q(x)+q(y); x,y\in X)$ of which has the homogeneity property $ q_c(łambda z)=|łambda|^2q_c(z)\quad (łambda\in C, z\in X_c=X\times X). $ In the second part of this paper we continue the study of quadratic forms on modules over algebras studied in [6], [7] and [4]. We assume as in [4] that the algebra $A$ has the identity element and that it as the regularity property: For any $t\in A$ there exists a natural number $n$ such that $t+n$ and $t+n+1$ are invertible in $A$.
Classification : 15A63 39B50 46C10 46K99
@article{PIM_1987_N_S_42_56_a4,
     author = {Svetozar Kurepa},
     title = {On the {Definition} of a {Quadratic} {Form}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {35 },
     publisher = {mathdoc},
     volume = {_N_S_42},
     number = {56},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/}
}
TY  - JOUR
AU  - Svetozar Kurepa
TI  - On the Definition of a Quadratic Form
JO  - Publications de l'Institut Mathématique
PY  - 1987
SP  - 35 
VL  - _N_S_42
IS  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/
LA  - en
ID  - PIM_1987_N_S_42_56_a4
ER  - 
%0 Journal Article
%A Svetozar Kurepa
%T On the Definition of a Quadratic Form
%J Publications de l'Institut Mathématique
%D 1987
%P 35 
%V _N_S_42
%N 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/
%G en
%F PIM_1987_N_S_42_56_a4
Svetozar Kurepa. On the Definition of a Quadratic Form. Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 35 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a4/