Representation of an arbitrary number with weight sum of essential subtrees
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 66-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for representation of arbitrary number of code words with sum of essential subtrees weights in the tree presenting all code words of $(m,n)$-code is suggested. Some properties of essential subtrees are determined.
@article{PDM_2009_10_a33,
     author = {N. B. Butorina and S. A. Lykhina},
     title = {Representation of an arbitrary number with weight sum of essential subtrees},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {66--68},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a33/}
}
TY  - JOUR
AU  - N. B. Butorina
AU  - S. A. Lykhina
TI  - Representation of an arbitrary number with weight sum of essential subtrees
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2009
SP  - 66
EP  - 68
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2009_10_a33/
LA  - ru
ID  - PDM_2009_10_a33
ER  - 
%0 Journal Article
%A N. B. Butorina
%A S. A. Lykhina
%T Representation of an arbitrary number with weight sum of essential subtrees
%J Prikladnaâ diskretnaâ matematika
%D 2009
%P 66-68
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2009_10_a33/
%G ru
%F PDM_2009_10_a33
N. B. Butorina; S. A. Lykhina. Representation of an arbitrary number with weight sum of essential subtrees. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 66-68. http://geodesic.mathdoc.fr/item/PDM_2009_10_a33/

[1] Matrosova A. Yu., Nikitin K. V., “Sintez samotestiruemogo detektora $(m,n)$-kodov na programmiruemykh logicheskikh blokakh”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2003, no. 6, 124–136

[2] Burkatovskaya Yu. B., Butorina N. B., Matrosova A. Yu., “Sintez samotestiruemykh detektorov proizvolnogo chisla ravnovesnykh kodov”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2006, no. 17, 190–197