Representation of an arbitrary number with weight sum of essential subtrees
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 66-68
An algorithm for representation of arbitrary number of code words with sum of essential subtrees weights in the tree presenting all code words of $(m,n)$-code is suggested. Some properties of essential subtrees are determined.
@article{PDM_2009_10_a33,
author = {N. B. Butorina and S. A. Lykhina},
title = {Representation of an arbitrary number with weight sum of essential subtrees},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {66--68},
year = {2009},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a33/}
}
N. B. Butorina; S. A. Lykhina. Representation of an arbitrary number with weight sum of essential subtrees. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 66-68. http://geodesic.mathdoc.fr/item/PDM_2009_10_a33/
[1] Matrosova A. Yu., Nikitin K. V., “Sintez samotestiruemogo detektora $(m,n)$-kodov na programmiruemykh logicheskikh blokakh”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2003, no. 6, 124–136
[2] Burkatovskaya Yu. B., Butorina N. B., Matrosova A. Yu., “Sintez samotestiruemykh detektorov proizvolnogo chisla ravnovesnykh kodov”, Vestnik Tomskogo gosuniversiteta. Prilozhenie, 2006, no. 17, 190–197