Representation of an arbitrary number with weight sum of essential subtrees
Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 66-68
Voir la notice de l'article provenant de la source Math-Net.Ru
An algorithm for representation of arbitrary number of code words with sum of essential subtrees weights in the tree presenting all code words of $(m,n)$-code is suggested. Some properties of essential subtrees are determined.
@article{PDM_2009_10_a33,
author = {N. B. Butorina and S. A. Lykhina},
title = {Representation of an arbitrary number with weight sum of essential subtrees},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {66--68},
publisher = {mathdoc},
number = {10},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2009_10_a33/}
}
TY - JOUR AU - N. B. Butorina AU - S. A. Lykhina TI - Representation of an arbitrary number with weight sum of essential subtrees JO - Prikladnaâ diskretnaâ matematika PY - 2009 SP - 66 EP - 68 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2009_10_a33/ LA - ru ID - PDM_2009_10_a33 ER -
N. B. Butorina; S. A. Lykhina. Representation of an arbitrary number with weight sum of essential subtrees. Prikladnaâ diskretnaâ matematika, no. 10 (2009), pp. 66-68. http://geodesic.mathdoc.fr/item/PDM_2009_10_a33/