Solving the problem of Boolean satisfiability for estimating the security of block ciphers Magma and PRESENT to algebraic cryptanalysis
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 62-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some results of experimental investigating algorithms for cryptanalysis of ciphers Magma and PRESENT are presented. Algorithms under investigation solve the systems of Boolean equations of these ciphers by known methods – SAT and XL. The ciphers under consideration have been taken with small numbers of rounds (3, 4 in PRESENT, 5,8 in Magma) and simplified S-boxes (identical, linearized in Magma). The experimental results (memory size, running time, number of addition operations) are presented in dependence on the numbers of plain/cipher texts, equations, unknowns, etc. For example, the $8$-round cipher Magma with 5376 equations, 2048 unknowns is analysed by a computer with the processor IntelCore i5 for 416.31 sec.
Keywords: cryptography, block ciphers, algorithm PRESENT, SAT-solver, SageMath, security estimation.
Mots-clés : algebraic cryptanalysis, algorithm Magma
@article{PDMA_2017_10_a25,
     author = {L. K. Babenko and E. A. Maro},
     title = {Solving the problem of {Boolean} satisfiability for estimating the security of block ciphers {Magma} and {PRESENT} to algebraic cryptanalysis},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {62--64},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a25/}
}
TY  - JOUR
AU  - L. K. Babenko
AU  - E. A. Maro
TI  - Solving the problem of Boolean satisfiability for estimating the security of block ciphers Magma and PRESENT to algebraic cryptanalysis
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 62
EP  - 64
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a25/
LA  - ru
ID  - PDMA_2017_10_a25
ER  - 
%0 Journal Article
%A L. K. Babenko
%A E. A. Maro
%T Solving the problem of Boolean satisfiability for estimating the security of block ciphers Magma and PRESENT to algebraic cryptanalysis
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 62-64
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a25/
%G ru
%F PDMA_2017_10_a25
L. K. Babenko; E. A. Maro. Solving the problem of Boolean satisfiability for estimating the security of block ciphers Magma and PRESENT to algebraic cryptanalysis. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 62-64. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a25/

[1] Courtois N., Bard G., Jefferson C., Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over $\mathrm{GF}(2)$ via SAT-Solvers, Cryptology ePrint Archive, Report 2007/024, , 2007 http://eprint.iacr.org/2007/024

[2] Soos M., Nohl K., Castelluccia C., “Extending SAT solvers to cryptographic problems”, Proc. 12th Intern. Conf. Theory and Applications of Satisfiability Testing, 2009, 244–257 | MR

[3] Charfi A., SAT-Solving in Algebraic Cryptanalysis, Bachelor Thesis, 2014 https://www.cdc.informatik.tu-darmstadt.de/reports/reports/Ahmed_Charfi.bachelor.pdf

[4] Courtois N., Gawinecki J., Song G., “Contradiction immunity and guess-then-determine attack on GOST”, Tatra Mt. Math. Publ., 53 (2012), 65–79 https://www.sav.sk/journals/uploads/0114113604CuGaSo.pdf | MR | Zbl

[5] Kazymyrov O., Oliynykov R., Raddum H., “Influence of addition modulo $2^n$ on algebraic attacks”, Cryptography and Communications, 8:2 (2016), 277–289 | DOI | MR | Zbl

[6] Dinur I., Dunkelman O., Shamir A., “Improved attacks on full GOST”, LNCS, 7549, 2012, 9–28 ; https://eprint.iacr.org/2011/558.pdf | Zbl

[7] Nakahara J., Sepehrdad P., Zhang B., Wang M., “Linear (hull) and algebraic cryptanalysis of the block cipher PRESENT”, 8th Intern. Conf. Cryptology and Network Security, CANS'09, N.Y., 2009, 58–75 | DOI | Zbl

[8] Lacko-Bartosova L., “Algebraic cryptanalysis of PRESENT based on the method of syllogism”, Tatra Mt. Math. Publ., 53 (2012), 201–212 https://www.sav.sk/journals/uploads/0114111812lackob.pdf | MR | Zbl

[9] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.4), , 2016 http://www.sagemath.org

[10] Sage Reference Manual: Cryptography Release 7.5, http://doc.sagemath.org/pdf/en/reference/cryptography/cryptography.pdf

[11] Babenko L. K., Ischukova E. A., “Analiz algoritma GOST 28147-89: poisk slabykh blokov”, Izvestiya YuFU. Tekhnicheskie nauki. Informatsionnaya bezopasnost, 2014, no. 2(151), 129–138