Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2017_10_a25, author = {L. K. Babenko and E. A. Maro}, title = {Solving the problem of {Boolean} satisfiability for estimating the security of block ciphers {Magma} and {PRESENT} to algebraic cryptanalysis}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {62--64}, publisher = {mathdoc}, number = {10}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a25/} }
TY - JOUR AU - L. K. Babenko AU - E. A. Maro TI - Solving the problem of Boolean satisfiability for estimating the security of block ciphers Magma and PRESENT to algebraic cryptanalysis JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2017 SP - 62 EP - 64 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a25/ LA - ru ID - PDMA_2017_10_a25 ER -
%0 Journal Article %A L. K. Babenko %A E. A. Maro %T Solving the problem of Boolean satisfiability for estimating the security of block ciphers Magma and PRESENT to algebraic cryptanalysis %J Prikladnaya Diskretnaya Matematika. Supplement %D 2017 %P 62-64 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a25/ %G ru %F PDMA_2017_10_a25
L. K. Babenko; E. A. Maro. Solving the problem of Boolean satisfiability for estimating the security of block ciphers Magma and PRESENT to algebraic cryptanalysis. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 62-64. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a25/
[1] Courtois N., Bard G., Jefferson C., Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over $\mathrm{GF}(2)$ via SAT-Solvers, Cryptology ePrint Archive, Report 2007/024, , 2007 http://eprint.iacr.org/2007/024
[2] Soos M., Nohl K., Castelluccia C., “Extending SAT solvers to cryptographic problems”, Proc. 12th Intern. Conf. Theory and Applications of Satisfiability Testing, 2009, 244–257 | MR
[3] Charfi A., SAT-Solving in Algebraic Cryptanalysis, Bachelor Thesis, 2014 https://www.cdc.informatik.tu-darmstadt.de/reports/reports/Ahmed_Charfi.bachelor.pdf
[4] Courtois N., Gawinecki J., Song G., “Contradiction immunity and guess-then-determine attack on GOST”, Tatra Mt. Math. Publ., 53 (2012), 65–79 https://www.sav.sk/journals/uploads/0114113604CuGaSo.pdf | MR | Zbl
[5] Kazymyrov O., Oliynykov R., Raddum H., “Influence of addition modulo $2^n$ on algebraic attacks”, Cryptography and Communications, 8:2 (2016), 277–289 | DOI | MR | Zbl
[6] Dinur I., Dunkelman O., Shamir A., “Improved attacks on full GOST”, LNCS, 7549, 2012, 9–28 ; https://eprint.iacr.org/2011/558.pdf | Zbl
[7] Nakahara J., Sepehrdad P., Zhang B., Wang M., “Linear (hull) and algebraic cryptanalysis of the block cipher PRESENT”, 8th Intern. Conf. Cryptology and Network Security, CANS'09, N.Y., 2009, 58–75 | DOI | Zbl
[8] Lacko-Bartosova L., “Algebraic cryptanalysis of PRESENT based on the method of syllogism”, Tatra Mt. Math. Publ., 53 (2012), 201–212 https://www.sav.sk/journals/uploads/0114111812lackob.pdf | MR | Zbl
[9] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.4), , 2016 http://www.sagemath.org
[10] Sage Reference Manual: Cryptography Release 7.5, http://doc.sagemath.org/pdf/en/reference/cryptography/cryptography.pdf
[11] Babenko L. K., Ischukova E. A., “Analiz algoritma GOST 28147-89: poisk slabykh blokov”, Izvestiya YuFU. Tekhnicheskie nauki. Informatsionnaya bezopasnost, 2014, no. 2(151), 129–138