On the regularity of oricyclic coordinates
Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 475-484.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose there is defined in the plane a complete metric $W^-$, whose curvature $K$ satisfies the inequality $-k_2^2\le K\le -k_1^2$ ($k_1$ and $k_2$ are positive constants) and some regularity hypothesis. Then in the entire domain of definition of the metric $W^-$ one can construct regular oricyclic coordinates $(x,y)$, in which the line element has the form $ds^2=dx^2+B2(x,y)\cdot dy^2$.
@article{MZM_1975_17_3_a14,
     author = {E. V. Shikin},
     title = {On the regularity of oricyclic coordinates},
     journal = {Matemati\v{c}eskie zametki},
     pages = {475--484},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a14/}
}
TY  - JOUR
AU  - E. V. Shikin
TI  - On the regularity of oricyclic coordinates
JO  - Matematičeskie zametki
PY  - 1975
SP  - 475
EP  - 484
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a14/
LA  - ru
ID  - MZM_1975_17_3_a14
ER  - 
%0 Journal Article
%A E. V. Shikin
%T On the regularity of oricyclic coordinates
%J Matematičeskie zametki
%D 1975
%P 475-484
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a14/
%G ru
%F MZM_1975_17_3_a14
E. V. Shikin. On the regularity of oricyclic coordinates. Matematičeskie zametki, Tome 17 (1975) no. 3, pp. 475-484. http://geodesic.mathdoc.fr/item/MZM_1975_17_3_a14/