Однородность высокая и низкая
Matematičeskie trudy, Tome 23 (2020) no. 2, pp. 100-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MT_2020_23_2_a3,
     author = {K. Zh. Kudaibergenov},
     title = {{\CYRO}{\cyrd}{\cyrn}{\cyro}{\cyrr}{\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyrsftsn} {\cyrv}{\cyrery}{\cyrs}{\cyro}{\cyrk}{\cyra}{\cyrya} {\cyri} {\cyrn}{\cyri}{\cyrz}{\cyrk}{\cyra}{\cyrya}},
     journal = {Matemati\v{c}eskie trudy},
     pages = {100--121},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MT_2020_23_2_a3/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - Однородность высокая и низкая
JO  - Matematičeskie trudy
PY  - 2020
SP  - 100
EP  - 121
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MT_2020_23_2_a3/
LA  - ru
ID  - MT_2020_23_2_a3
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T Однородность высокая и низкая
%J Matematičeskie trudy
%D 2020
%P 100-121
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MT_2020_23_2_a3/
%G ru
%F MT_2020_23_2_a3
K. Zh. Kudaibergenov. Однородность высокая и низкая. Matematičeskie trudy, Tome 23 (2020) no. 2, pp. 100-121. http://geodesic.mathdoc.fr/item/MT_2020_23_2_a3/

[1] K. Zh. Kudaibergenov, “Ob odnorodnykh modelyakh totalno transtsendentnykh nemultirazmernostnykh teorii”, Algebra i logika, 30:1 (1991), 48–73 | MR

[2] K. Zh. Kudaibergenov, “Ob odnorodnykh modelyakh odnorazmernostnykh teorii”, Algebra i logika, 34:1 (1995), 61–78 | MR

[3] K. Zh. Kudaibergenov, “Ob odnorodnykh modelyakh nekotorykh slabo minimalnykh teorii”, Sib. matem. zhurn., 40:6 (1999), 1253–1259 | MR

[4] K. Zh. Kudaibergenov, “Ob odnorodnykh modelyakh lokalno modulyarnykh teorii konechnogo ranga”, Matem. tr., 5:1 (2002), 74–83 | MR

[5] K. Zh. Kudaibergenov, “Odnorodnye modeli i stabilnye diagrammy”, Sib. matem. zhurn., 43:5 (2002), 1064–1076 | MR

[6] K. Zh. Kudaibergenov, “O sokhranenii i narushenii odnorodnosti pri spetsialnom obogaschenii”, Matem. tr., 12:1 (2009), 117–129 | MR | Zbl

[7] Dzh. Saks, Teoriya nasyschennykh modelei, Mir, M., 1976

[8] J. T. Baldwin, A. H. Lachlan, “On strongly minimal sets”, J. Symbolic Logic, 36:1 (1971), 79–96 | DOI | MR | Zbl

[9] R. Grossberg, O. Lessmann, “Shelah-s stability spectrum and homogeneity spectrum in finite diagrams”, Arch. Math. Logic, 41:1 (2002), 1–31 | DOI | MR | Zbl

[10] E. Hrushovski, “Unidimensional theories are superstable”, Ann. Pure Appl. Logic, 50:2 (1990), 117–137 | DOI | MR

[11] H. J. Keisler, M. D. Morley, “On the number of homogeneous models of a given power”, Israel J. Math., 5:2 (1967), 73–78 | DOI | MR | Zbl

[12] K. Zh. Kudaibergenov, “Homogeneous models of stable theories”, Siberian Adv. Math., 3:3 (1993), 56–88 | MR

[13] M. Makkai, “A survey of basic stability theory with particular emphasis on orthogonality and regular types”, Israel J. Math., 49 (1984), 181–238 | DOI | MR | Zbl

[14] A. Pillay, P. Rothmaler, “Non-totally transcendental unidimensional theories”, Arch. Math. Logic, 30:2 (1990), 93–111 | DOI | MR | Zbl

[15] S. Shelah, “Finite diagrams stable in power”, Ann. Math. Logic, 2:1 (1970), 69–118 | DOI | MR | Zbl

[16] S. Shelah, “The lazy model-theoretician-s guide to stability”, Logique et Anal. (N.S.), 18 (1975), 241–308 | MR | Zbl

[17] S. Shelah, Classification Theory and the Number of Nonisomorphic Models, Studies in Logic and the Foundations of Mathematics, 92, North-Holland Publishing Co, Amsterdam–New York, 1978 | MR