Strategic stability of one-point optimality principles in cooperative stochastic games
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 56-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Cooperative stochastic games are investigated in the paper. The construction of stable cooperation is an actual problem for this class of dynamic games. One of stable cooperation principles is the strategic stability of the cooperative decision or the cooperative optimality principle chosen by the players. Strategic stability guarantees that the players' cooperative payoffs can be obtained if players realize a Nash equilibrium. Sufficient conditions of the strategic stability of the single-point optimality principle are obtained.
Keywords: stochastic game, Nash equilibrium, strategic stability, payoff distribution procedure, time consistency.
Mots-clés : subgame consistency
@article{MGTA_2014_6_1_a3,
     author = {Elena M. Parilina},
     title = {Strategic stability of one-point optimality principles in cooperative stochastic games},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {56--72},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a3/}
}
TY  - JOUR
AU  - Elena M. Parilina
TI  - Strategic stability of one-point optimality principles in cooperative stochastic games
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 56
EP  - 72
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a3/
LA  - ru
ID  - MGTA_2014_6_1_a3
ER  - 
%0 Journal Article
%A Elena M. Parilina
%T Strategic stability of one-point optimality principles in cooperative stochastic games
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 56-72
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a3/
%G ru
%F MGTA_2014_6_1_a3
Elena M. Parilina. Strategic stability of one-point optimality principles in cooperative stochastic games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 56-72. http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a3/