Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2014_6_1_a3, author = {Elena M. Parilina}, title = {Strategic stability of one-point optimality principles in cooperative stochastic games}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {56--72}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a3/} }
TY - JOUR AU - Elena M. Parilina TI - Strategic stability of one-point optimality principles in cooperative stochastic games JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2014 SP - 56 EP - 72 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a3/ LA - ru ID - MGTA_2014_6_1_a3 ER -
Elena M. Parilina. Strategic stability of one-point optimality principles in cooperative stochastic games. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 56-72. http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a3/
[1] Parilina E. M., “Ustoichivaya kooperatsiya v stokhasticheskikh igrakh”, Matematicheskaya teoriya igr i ee prilozheniya, 2:3 (2010), 21–40 | Zbl
[2] Petrosyan L. A., “Ustoichivost reshenii v differentsialnykh igrakh so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta. Ser. 1, 1977, no. 19, 46–52
[3] Petrosyan L. A., Baranova E. M., Shevkoplyas E. V., “Mnogoshagovye kooperativnye igry so sluchainoi prodolzhitelnostyu”, Optimalnoe upravlenie i differentsialnye igry, Sbornik statei, Trudy instituta matematiki i mekhaniki, 10, no. 2, 2004, 116–130 | MR | Zbl
[4] Petrosyan L. A., Danilov N. A., “Ustoichivye resheniya neantagonisticheskikh differentsialnykh igr s tranzitivnymi vyigryshami”, Vestnik LGU, 1979, no. 1, 46–54
[5] Petrosyan L. A., Zenkevich N. A., “Printsipy ustoichivoi kooperatsii”, Matematicheskaya teoriya igr i ee prilozheniya, 1:1 (2009), 106–123 | Zbl
[6] Baranova E. M., Petrosyan L. A., “Cooperative Stochastic Games in Stationary Strategies”, Game Theory and Applications, 11 (2006), 7–17 | MR
[7] Breton M., “Algorithms for stochastic games”, Stochastic Games and Related Topics, In Honor of Professor L. S. Shapley, Theory and Decision Library C: Game Theory, Mathematical Programming and Operations Research, 7, eds. T. E. S. Raghavan, T. S. Ferguson, T. Parthasarathy, O. J. Vrieze, Kluwer Academic Publishers, Dordrecht, 1991, 45–57
[8] Dutta P., “A Folk Theorem for Stochastic Games”, Journal of Economic Theory, 66 (1995), 1–32 | DOI | MR | Zbl
[9] Fink A. M., “Equilibrium in a stochastic $n$-person game”, Journal of Science of the Hiroshima University. Series A-I, 28:1 (1964), 89–93 | MR | Zbl
[10] Grauer L. V., Petrosjan L. A., “Strong Nash Equilibrium in Multistage Games”, International Game Theory Review, 4:3 (2002), 255–264 | DOI | MR | Zbl
[11] Herings P. J.-J., Peeters R. J. A. P., “Stationary Equlibria in Stochastic Games: Structure, Selection, and Computation”, Journal of Economic Theory, 118:1 (2004), 32–60 | DOI | MR | Zbl
[12] Petrosjan L. A., “Cooperative Stochastic Games”, Advances in Dynamic Games, Application to Economics, Engineering and Environmental Management, Annals of the ISDG, 8, eds. A. Haurie, S. Muto, L. A. Petrosjan, T. E. S. Raghavan, 2006, 139–146 | MR
[13] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM Journal of Applied Mathematics, 17:6 (1969), 1163–1170 | DOI | MR | Zbl
[14] Shapley L. S., “Stochastic Games”, Proceedings of National Academy of Sciences of the USA, 39 (1953), 1095–1100 | DOI | MR | Zbl
[15] Takahashi M., “Equilibrium points of stochastic non-cooperative $n$-person games”, Journal of Science of the Hiroshima University. Series A-I, 28:1 (1964), 95–99 | MR | Zbl