Equilibrium in transportation game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 41-55

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-cooperative $m$-person transportation game which is related to the queueing system $M/M/m$ on graph is considered. There are $m$ services (transport companies) which serve the stream of customers with exponential distribution with parameters $\mu_i$ $i=1,2,\ldots,m$. The stream forms the Poisson process with matrix of intensities $\Lambda$. The solution of the problem of pricing and determining the optimal intensity for each firm in the competition is derived.
@article{MGTA_2014_6_1_a2,
     author = {Anna V. Melnik},
     title = {Equilibrium in transportation game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {41--55},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a2/}
}
TY  - JOUR
AU  - Anna V. Melnik
TI  - Equilibrium in transportation game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 41
EP  - 55
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a2/
LA  - ru
ID  - MGTA_2014_6_1_a2
ER  - 
%0 Journal Article
%A Anna V. Melnik
%T Equilibrium in transportation game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 41-55
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a2/
%G ru
%F MGTA_2014_6_1_a2
Anna V. Melnik. Equilibrium in transportation game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 41-55. http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a2/