Equilibrium in transportation game
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 41-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-cooperative $m$-person transportation game which is related to the queueing system $M/M/m$ on graph is considered. There are $m$ services (transport companies) which serve the stream of customers with exponential distribution with parameters $\mu_i$ $i=1,2,\ldots,m$. The stream forms the Poisson process with matrix of intensities $\Lambda$. The solution of the problem of pricing and determining the optimal intensity for each firm in the competition is derived.
@article{MGTA_2014_6_1_a2,
     author = {Anna V. Melnik},
     title = {Equilibrium in transportation game},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {41--55},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a2/}
}
TY  - JOUR
AU  - Anna V. Melnik
TI  - Equilibrium in transportation game
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2014
SP  - 41
EP  - 55
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a2/
LA  - ru
ID  - MGTA_2014_6_1_a2
ER  - 
%0 Journal Article
%A Anna V. Melnik
%T Equilibrium in transportation game
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2014
%P 41-55
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a2/
%G ru
%F MGTA_2014_6_1_a2
Anna V. Melnik. Equilibrium in transportation game. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 6 (2014) no. 1, pp. 41-55. http://geodesic.mathdoc.fr/item/MGTA_2014_6_1_a2/

[1] Bure V. M., Mazalov V. V., Plaksina N. V., “Vychislenie kharakteristik passazhiropotokov v transportnykh sistemakh”, Upravlenie bolshimi sistemami, 47, 2014, 77–91

[2] Mazalova A. V., “Duopoliya v sisteme obsluzhivaniya s ocheredyami”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2013, no. 4, 32–41

[3] Khemdi A. Taxa, Vvedenie v issledovanie operatsii, Izdatelskii dom “Vilyamc”, 2005

[4] Altman E., Shimkin N., “Individual equilibrium and learning in processor sharing systems”, Operations Research, 46:6 (1998), 776–784 | DOI | MR | Zbl

[5] Hassin R., Haviv M., To queue or not to queue. Equilibrium behavior in queueing systems, Springer, 2003 | MR

[6] Levhari D., Luski I., “Duopoly pricing and waiting lines”, European Economic Review, 11 (1978), 17–35 | DOI

[7] Luski I., “On partial equilibrium in a queueing system with two services”, The Review of Economic Studies, 43:3 (1976), 519–525 | DOI | Zbl