Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2018_13_2_a6, author = {A. M. Andrianov and G. I. Nikolaev and I. A. Kashin and A. V. Tuzikov}, title = {Development of potential {HIV-1} inhibitors by in silico click chemistry and molecular modeling methods}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {507--525}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a6/} }
TY - JOUR AU - A. M. Andrianov AU - G. I. Nikolaev AU - I. A. Kashin AU - A. V. Tuzikov TI - Development of potential HIV-1 inhibitors by in silico click chemistry and molecular modeling methods JO - Matematičeskaâ biologiâ i bioinformatika PY - 2018 SP - 507 EP - 525 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a6/ LA - ru ID - MBB_2018_13_2_a6 ER -
%0 Journal Article %A A. M. Andrianov %A G. I. Nikolaev %A I. A. Kashin %A A. V. Tuzikov %T Development of potential HIV-1 inhibitors by in silico click chemistry and molecular modeling methods %J Matematičeskaâ biologiâ i bioinformatika %D 2018 %P 507-525 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a6/ %G ru %F MBB_2018_13_2_a6
A. M. Andrianov; G. I. Nikolaev; I. A. Kashin; A. V. Tuzikov. Development of potential HIV-1 inhibitors by in silico click chemistry and molecular modeling methods. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 507-525. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a6/
[1] E. J. Arts, D. J. Hazuda, “HIV-1 antiretroviral drug therapy”, Cold Spring Harb. Perspect. Med., 2 (2012), a007161 | DOI
[2] G. Kumari, R. K. Singh, “Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario”, HIV AIDS Rev., 11 (2012), 5–14 | DOI
[3] H.-B. Wang, Q.-H. Mo, Z. Yang, “HIV vaccine research: The challenge and the way forward”, J. Immunol. Res., 2015, 503978
[4] E. De Clercq, “New approaches toward anti-HIV chemotherapy”, J. Med. Chem., 48 (2005), 1297–1313 | DOI
[5] J. A. Este, A. Telenti, “HIV entry inhibitors”, Lancet, 370 (2007), 81–88 | DOI
[6] S. Rusconi, A. Scozzafava, A. Mastrolorenzo, C. T. Supuran, “An update in the development of HIV entry inhibitors”, Curr. Topics in Med. Chem., 7 (2007), 1273–1289 | DOI
[7] H. J.P. Ryser, R. Fluckiger, “Progress in targeting HIV-1 entry”, Drug Discov. Today., 10 (2005), 1085–1094 | DOI
[8] C. S. Adamson, E. O. Freed, “Novel approaches to inhibiting HIV-1 replication”, Antiviral. Res., 85 (2010), 119–141 | DOI
[9] J. C. Tilton, R. W. Doms, “Entry inhibitors in the treatment of HIV-1 infection”, Antiviral Res., 85 (2010), 91–100 | DOI
[10] S. Orsega, Treatment of adult HIV infection: antiretroviral update and overview, 10 (2007), 612–624
[11] T. Matthews, M. Salgo, M. Greenberg, J. Chung, R. DeMasi, D. Bolognesi, “Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes”, Nat. Rev. Drug Discov., 3 (2004), 215–225 | DOI
[12] R. D. MacArthur, R. M. Novak, “Maraviroc: The first of a new class of antiretroviral agents”, Clin. Infect. Dis., 47 (2008), 236–241 | DOI
[13] C. B. Wilen, J. C. Tilton, R. W. Doms, “HIV: Cell binding, entry”, Cold Spring Harb. Perspect. Med., 2 (2012), a006866 | DOI
[14] J. R. Courter, N. Madani, J. Sodroski, A. Schon, E. Freire, P. D. Kwong, W. A. Hendrickson, I. M. Chaiken, J. M. LaLonde, A. B. Smith III, “Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist”, Acc. Chem. Res., 47 (2014), 1228–1237 | DOI
[15] Y. Liu, A. Schon, E. Freire, “Optimization of CD4/gp120 inhibitors by thermodynamicguided alanine-scanning mutagenesis”, Chem. Biol. Drug Des., 81 (2013), 72–78 | DOI
[16] L. Morellato-Castillo, P. Acharya, O. Combes, J. Michiels, A. Descours, O. H.P. Ramos, Y. Yang, G. Guido Vanham, K. K. Arien, P. D. Kwong, L. Martin, P. Kessler, “Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with HIV-1 surface glycoprotein”, J. Med. Chem., 56 (2013), 5033–5047 | DOI
[17] P. Acharya, S. Lusvarghi, C. A. Bewley, P. D. Kwong, “HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth”, Expert Opin. Ther. Targets, 19 (2015), 1–19 | DOI
[18] W. Li, L. Lu, W. Li, S. Jiang, “Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: a patent review (2010–2015)”, Expert Opin. Ther. Pat., 27:6 (2017), 707–719 | DOI
[19] P. D. Kwong, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski, W. A. Hendrickson, “Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody”, Nature, 393 (1998), 648–659 | DOI
[20] A. M. Andrianov, Konformatsionnyi analiz belkov. Teoriya i prilozheniya, Izdatelskii dom «Belaruskaya navuka», 2013, 518 pp.
[21] G. Sliwoski, S. Kothiwale, J. Meiler, E. W. Jr. Lowe, “Computational methods in drug discovery”, Pharmacol. Rev., 66:1 (2014), 334–395 | DOI
[22] H. C. Kolb, M. G. Finn, K. B. Sharpless, “Click chemistry: Diverse chemical function from a few good reactions”, Angew. Chem. Int. Ed., 40:11 (2001), 2004–2021 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[23] J. E. Moses, A. D. Moorhouse, “The growing applications of click chemistry”, Chem. Soc. Rev., 36 (2007), 1249–1262 | DOI
[24] P. Thirumurugan, D. Matosiuk, K. Jozwiak, “Click chemistry for drug development and diverse chemical-biology applications”, Chem. Rev., 113:7 (2013), 4905–4979 | DOI
[25] A. M. Andrianov, Yu. V. Kornoushenko, I. A. Kashin, A. V. Tuzikov, “Kompyuternoe konstruirovanie novykh ingibitorov proniknoveniya VICh-1 na osnove glikosfingolipidov”, Matematicheskaya biologiya i bioinformatika, 8:1 (2013), 258–275 | DOI
[26] A. M. Andrianov, I. A. Kashin, A. V. Tuzikov, “Kompyuternyi poisk novykh antiVICh-1 agentov — peptidomimetikov neitralizuyuschikh antitel — i otsenka ikh potentsialnoi ingibitornoi aktivnosti metodami molekulyarnogo modelirovaniya”, Matematicheskaya biologiya i bioinformatika, 8:1 (2013), 119–134 | DOI
[27] I. A. Kashin, A. V. Tuzikov, A. M. Andrianov, “Virtualnyi skrining novykh ingibitorov proniknoveniya VICh-1, blokiruyuschikh CD4-svyazyvayuschii uchastok belka gp120 obolochki virusa”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 359–372 | DOI
[28] I. A. Kashin, A. V. Tuzikov, A. M. Andrianov, “Identifikatsiya novykh potentsialnykh ingibitorov belka gp41 VICh-1 metodami virtualnogo skrininga i molekulyarnogo modelirovaniya”, Matematicheskaya biologiya i bioinformatika, 10:2 (2015), 325–343 | DOI
[29] A. M. Andrianov, I. A. Kashyn, A. V. Tuzikov, “Computational discovery of novel HIV-1 entry inhibitors based on potent and broad neutralizing antibody VRC01”, J. Mol. Graph. Model., 61 (2015), 262–271 | DOI
[30] A. M. Andrianov, I. A. Kashyn, A. V. Tuzikov, “Identification of novel HIV-1 fusion inhibitor scaffolds by virtual screening, high-throughput docking and molecular dynamics simulations”, JSM Chem., 4:2 (2016), 1022
[31] A. M. Andrianov, I. A. Kashyn, A. V. Tuzikov, “Computational identification of novel entry inhibitor scaffolds mimicking primary receptor CD4 of HIV-1 gp120”, J. Mol. Model., 23 (2017), 1–18 | DOI
[32] A. M. Andrianov, I. A. Kashyn, A. V. Tuzikov, “Potential HIV-1 fusion inhibitors mimicking gp41-specific broadly neutralizing antibody 10E8: In silico discovery and prediction of antiviral potency”, J. Bioinform. Comput. Biol., 4:4 (2018), 1022
[33] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings”, Adv. Drug Deliv. Rev., 46:1–3 (2001), 3–26 | DOI
[34] J. J. Irwin, B. K. Shoichet, “ZINC — a free database of commercially available compounds for virtual screening”, J. Chem. Inf. Model., 45:1 (2005), 177–182 | DOI
[35] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, R. G. Coleman, “ZINC: a free tool to discover chemistry for biology”, J. Chem. Inf. Model., 52:7 (2012), 1757–1768 | DOI
[36] J. R. Courter, N. Madani, J. Sodroski, A. Schon, E. Freire, P. D. Kwong, W. A. Hendrickson, I. M. Chaiken, J. M. LaLonde, A. B. Smith III, “Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist”, Acc. Chem. Res., 47:4 (2014), 1228–1237 | DOI
[37] F. Curreli, Y. D. Kwon, H. Zhanga, D. Scacalossi, D. S. Belov, A. A. Tikhonov, I. A. Andreev, A. Altieric, A. V. Kurkin, P. D. Kwong, A. K. Debnath, “Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity”, J. Med. Chem., 58:17 (2015), 6909–6927 | DOI
[38] J. D. Durrant, J. A. McCammon, “AutoClickChem: Click chemistry in silico”, PLoS Comput. Biol., 8:3 (2012), e1002397 | DOI
[39] A. Alhossary, S. D. Handoko, Y. Mu, Kwoh C. K., “Fast, accurate, and reliable molecular docking with QuickVina 2”, Bioinform., 31:13 (2015), 2214–2216 | DOI
[40] O. Trott, A. J. Olson, “Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, J. Comput. Chem., 31 (2010), 455–461
[41] J. D. Durrant, J. A. McCammon, “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model., 29 (2011), 888–893 | DOI
[42] I. K. McDonald, J. M. Thornton, “Satisfying hydrogen bonding potential in proteins”, J. Mol. Biol., 238 (1994), 777–793 | DOI
[43] D. A. Case, T. A. Darden, T. E. Cheatham, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, M. Crowley, R. C. Walker, W. Zhang, K. M. Merz, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin, P. A. Kollman, AMBER 11, University of California, San Francisco, 2010
[44] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., 79 (1983), 926–935 | DOI
[45] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, “Development and testing of a general Amber force field”, J. Comput. Chem., 25 (2004), 1157–1174 | DOI
[46] H. J.C. Berendsen, J. P.M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI
[47] J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, “Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys., 23 (1977), 327–341 | DOI
[48] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method”, J. Chem. Phys., 103 (1995), 8577–8593 | DOI
[49] I. Massova, P. A. Kollman, “Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies”, J. Am. Chem. Soc., 121 (1999), 8133–8143 | DOI
[50] B. R. Miller III, T. D. McGee Jr., J. M. Swails, N. Homeyer, H. Gohlke, A. E. Roitberg, “MMPBSA.py: An efficient program for end-state free energy calculations”, J. Chem. Theory Comput., 8 (2012), 3314–3321 | DOI
[51] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, “Improved side-chain torsion potentials for the Amber ff99SB protein force field”, Proteins, 78 (2010), 1950–1958
[52] U. Moebius, L. K. Clayton, S. Abraham, S. C. Harrison, E. L. Reinherz, “The human immunodeficiency virus-gp120 binding-site on CD4 — Delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic-structure”, J. Exp. Med., 176:2 (1992), 507–517 | DOI
[53] U. Olshevsky, E. Helseth, C. Furman, J. Li, W. Haseltine, J. Sodroski, “Identification of individual human-immunodeficiency-virus type-1 gp120 amino-acids important for CD4 receptor-binding”, J. Virol., 64:12 (1990), 5701–5707
[54] Q. Zhao, L. Ma, S. Jiang, H. Lu, S. Liu, Y. He, N. Strick, N. Neamati, A. K. Debnath, “Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4”, Virology, 339:2 (2005), 213–225 | DOI
[55] D. G. Myszka, R. W. Sweet, P. Hensley, M. Brigham-Burke, P. D. Kwong, W. A. Hendrickson, R. Wyatt, J. Sodroski, M. L. Doyle, “Energetics of the HIV gp120-CD4 binding reaction”, Proc. Natl. Acad. Sci. USA, 97:16 (2000), 9026–9031 | DOI
[56] S. Brase, K. Banert, Organic Azides: Syntheses and applications, Wiley, 2009, 536 pp.