Development of potential HIV-1 inhibitors by in silico click chemistry and molecular modeling methods
Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 507-525.

Voir la notice de l'article provenant de la source Math-Net.Ru

Design of novel potential HIV-1 inhibitors able to block CD4-binding site of the envelope gp120 protein was carried out based on click chemistry in silico, a methodology allowing one to generate a large number of drug candidates by assembly from small modular units and to study their properties. Using the methods of molecular modeling, the neutralizing activity of designed molecules was evaluated, as a result of which five leading compounds that are promising for synthesis and biological trials were identified. Their chemical formulas are C$_{24}$H$_{23}$N$_7$O$_2$, C$_{23}$H$_{20}$N$_6$O$_2$, C$_{21}$H$_{17}$F$_{3}$N$_6$, C$_{22}$H$_{20}$ClN$_9$O and C$_{19}$H$_{15}$N$_9$O. It has been shown that these compounds can be used as good scaffolds for the development of novel potent and broad anti-HIV drugs with extensive viral neutralization effect.
@article{MBB_2018_13_2_a6,
     author = {A. M. Andrianov and G. I. Nikolaev and I. A. Kashin and A. V. Tuzikov},
     title = {Development of potential {HIV-1} inhibitors by in silico click chemistry and molecular modeling methods},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {507--525},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a6/}
}
TY  - JOUR
AU  - A. M. Andrianov
AU  - G. I. Nikolaev
AU  - I. A. Kashin
AU  - A. V. Tuzikov
TI  - Development of potential HIV-1 inhibitors by in silico click chemistry and molecular modeling methods
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2018
SP  - 507
EP  - 525
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a6/
LA  - ru
ID  - MBB_2018_13_2_a6
ER  - 
%0 Journal Article
%A A. M. Andrianov
%A G. I. Nikolaev
%A I. A. Kashin
%A A. V. Tuzikov
%T Development of potential HIV-1 inhibitors by in silico click chemistry and molecular modeling methods
%J Matematičeskaâ biologiâ i bioinformatika
%D 2018
%P 507-525
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a6/
%G ru
%F MBB_2018_13_2_a6
A. M. Andrianov; G. I. Nikolaev; I. A. Kashin; A. V. Tuzikov. Development of potential HIV-1 inhibitors by in silico click chemistry and molecular modeling methods. Matematičeskaâ biologiâ i bioinformatika, Tome 13 (2018) no. 2, pp. 507-525. http://geodesic.mathdoc.fr/item/MBB_2018_13_2_a6/

[1] E. J. Arts, D. J. Hazuda, “HIV-1 antiretroviral drug therapy”, Cold Spring Harb. Perspect. Med., 2 (2012), a007161 | DOI

[2] G. Kumari, R. K. Singh, “Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario”, HIV AIDS Rev., 11 (2012), 5–14 | DOI

[3] H.-B. Wang, Q.-H. Mo, Z. Yang, “HIV vaccine research: The challenge and the way forward”, J. Immunol. Res., 2015, 503978

[4] E. De Clercq, “New approaches toward anti-HIV chemotherapy”, J. Med. Chem., 48 (2005), 1297–1313 | DOI

[5] J. A. Este, A. Telenti, “HIV entry inhibitors”, Lancet, 370 (2007), 81–88 | DOI

[6] S. Rusconi, A. Scozzafava, A. Mastrolorenzo, C. T. Supuran, “An update in the development of HIV entry inhibitors”, Curr. Topics in Med. Chem., 7 (2007), 1273–1289 | DOI

[7] H. J.P. Ryser, R. Fluckiger, “Progress in targeting HIV-1 entry”, Drug Discov. Today., 10 (2005), 1085–1094 | DOI

[8] C. S. Adamson, E. O. Freed, “Novel approaches to inhibiting HIV-1 replication”, Antiviral. Res., 85 (2010), 119–141 | DOI

[9] J. C. Tilton, R. W. Doms, “Entry inhibitors in the treatment of HIV-1 infection”, Antiviral Res., 85 (2010), 91–100 | DOI

[10] S. Orsega, Treatment of adult HIV infection: antiretroviral update and overview, 10 (2007), 612–624

[11] T. Matthews, M. Salgo, M. Greenberg, J. Chung, R. DeMasi, D. Bolognesi, “Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes”, Nat. Rev. Drug Discov., 3 (2004), 215–225 | DOI

[12] R. D. MacArthur, R. M. Novak, “Maraviroc: The first of a new class of antiretroviral agents”, Clin. Infect. Dis., 47 (2008), 236–241 | DOI

[13] C. B. Wilen, J. C. Tilton, R. W. Doms, “HIV: Cell binding, entry”, Cold Spring Harb. Perspect. Med., 2 (2012), a006866 | DOI

[14] J. R. Courter, N. Madani, J. Sodroski, A. Schon, E. Freire, P. D. Kwong, W. A. Hendrickson, I. M. Chaiken, J. M. LaLonde, A. B. Smith III, “Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist”, Acc. Chem. Res., 47 (2014), 1228–1237 | DOI

[15] Y. Liu, A. Schon, E. Freire, “Optimization of CD4/gp120 inhibitors by thermodynamicguided alanine-scanning mutagenesis”, Chem. Biol. Drug Des., 81 (2013), 72–78 | DOI

[16] L. Morellato-Castillo, P. Acharya, O. Combes, J. Michiels, A. Descours, O. H.P. Ramos, Y. Yang, G. Guido Vanham, K. K. Arien, P. D. Kwong, L. Martin, P. Kessler, “Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with HIV-1 surface glycoprotein”, J. Med. Chem., 56 (2013), 5033–5047 | DOI

[17] P. Acharya, S. Lusvarghi, C. A. Bewley, P. D. Kwong, “HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth”, Expert Opin. Ther. Targets, 19 (2015), 1–19 | DOI

[18] W. Li, L. Lu, W. Li, S. Jiang, “Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: a patent review (2010–2015)”, Expert Opin. Ther. Pat., 27:6 (2017), 707–719 | DOI

[19] P. D. Kwong, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski, W. A. Hendrickson, “Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody”, Nature, 393 (1998), 648–659 | DOI

[20] A. M. Andrianov, Konformatsionnyi analiz belkov. Teoriya i prilozheniya, Izdatelskii dom «Belaruskaya navuka», 2013, 518 pp.

[21] G. Sliwoski, S. Kothiwale, J. Meiler, E. W. Jr. Lowe, “Computational methods in drug discovery”, Pharmacol. Rev., 66:1 (2014), 334–395 | DOI

[22] H. C. Kolb, M. G. Finn, K. B. Sharpless, “Click chemistry: Diverse chemical function from a few good reactions”, Angew. Chem. Int. Ed., 40:11 (2001), 2004–2021 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[23] J. E. Moses, A. D. Moorhouse, “The growing applications of click chemistry”, Chem. Soc. Rev., 36 (2007), 1249–1262 | DOI

[24] P. Thirumurugan, D. Matosiuk, K. Jozwiak, “Click chemistry for drug development and diverse chemical-biology applications”, Chem. Rev., 113:7 (2013), 4905–4979 | DOI

[25] A. M. Andrianov, Yu. V. Kornoushenko, I. A. Kashin, A. V. Tuzikov, “Kompyuternoe konstruirovanie novykh ingibitorov proniknoveniya VICh-1 na osnove glikosfingolipidov”, Matematicheskaya biologiya i bioinformatika, 8:1 (2013), 258–275 | DOI

[26] A. M. Andrianov, I. A. Kashin, A. V. Tuzikov, “Kompyuternyi poisk novykh antiVICh-1 agentov — peptidomimetikov neitralizuyuschikh antitel — i otsenka ikh potentsialnoi ingibitornoi aktivnosti metodami molekulyarnogo modelirovaniya”, Matematicheskaya biologiya i bioinformatika, 8:1 (2013), 119–134 | DOI

[27] I. A. Kashin, A. V. Tuzikov, A. M. Andrianov, “Virtualnyi skrining novykh ingibitorov proniknoveniya VICh-1, blokiruyuschikh CD4-svyazyvayuschii uchastok belka gp120 obolochki virusa”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 359–372 | DOI

[28] I. A. Kashin, A. V. Tuzikov, A. M. Andrianov, “Identifikatsiya novykh potentsialnykh ingibitorov belka gp41 VICh-1 metodami virtualnogo skrininga i molekulyarnogo modelirovaniya”, Matematicheskaya biologiya i bioinformatika, 10:2 (2015), 325–343 | DOI

[29] A. M. Andrianov, I. A. Kashyn, A. V. Tuzikov, “Computational discovery of novel HIV-1 entry inhibitors based on potent and broad neutralizing antibody VRC01”, J. Mol. Graph. Model., 61 (2015), 262–271 | DOI

[30] A. M. Andrianov, I. A. Kashyn, A. V. Tuzikov, “Identification of novel HIV-1 fusion inhibitor scaffolds by virtual screening, high-throughput docking and molecular dynamics simulations”, JSM Chem., 4:2 (2016), 1022

[31] A. M. Andrianov, I. A. Kashyn, A. V. Tuzikov, “Computational identification of novel entry inhibitor scaffolds mimicking primary receptor CD4 of HIV-1 gp120”, J. Mol. Model., 23 (2017), 1–18 | DOI

[32] A. M. Andrianov, I. A. Kashyn, A. V. Tuzikov, “Potential HIV-1 fusion inhibitors mimicking gp41-specific broadly neutralizing antibody 10E8: In silico discovery and prediction of antiviral potency”, J. Bioinform. Comput. Biol., 4:4 (2018), 1022

[33] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings”, Adv. Drug Deliv. Rev., 46:1–3 (2001), 3–26 | DOI

[34] J. J. Irwin, B. K. Shoichet, “ZINC — a free database of commercially available compounds for virtual screening”, J. Chem. Inf. Model., 45:1 (2005), 177–182 | DOI

[35] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, R. G. Coleman, “ZINC: a free tool to discover chemistry for biology”, J. Chem. Inf. Model., 52:7 (2012), 1757–1768 | DOI

[36] J. R. Courter, N. Madani, J. Sodroski, A. Schon, E. Freire, P. D. Kwong, W. A. Hendrickson, I. M. Chaiken, J. M. LaLonde, A. B. Smith III, “Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist”, Acc. Chem. Res., 47:4 (2014), 1228–1237 | DOI

[37] F. Curreli, Y. D. Kwon, H. Zhanga, D. Scacalossi, D. S. Belov, A. A. Tikhonov, I. A. Andreev, A. Altieric, A. V. Kurkin, P. D. Kwong, A. K. Debnath, “Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity”, J. Med. Chem., 58:17 (2015), 6909–6927 | DOI

[38] J. D. Durrant, J. A. McCammon, “AutoClickChem: Click chemistry in silico”, PLoS Comput. Biol., 8:3 (2012), e1002397 | DOI

[39] A. Alhossary, S. D. Handoko, Y. Mu, Kwoh C. K., “Fast, accurate, and reliable molecular docking with QuickVina 2”, Bioinform., 31:13 (2015), 2214–2216 | DOI

[40] O. Trott, A. J. Olson, “Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, J. Comput. Chem., 31 (2010), 455–461

[41] J. D. Durrant, J. A. McCammon, “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model., 29 (2011), 888–893 | DOI

[42] I. K. McDonald, J. M. Thornton, “Satisfying hydrogen bonding potential in proteins”, J. Mol. Biol., 238 (1994), 777–793 | DOI

[43] D. A. Case, T. A. Darden, T. E. Cheatham, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, M. Crowley, R. C. Walker, W. Zhang, K. M. Merz, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin, P. A. Kollman, AMBER 11, University of California, San Francisco, 2010

[44] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., 79 (1983), 926–935 | DOI

[45] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, “Development and testing of a general Amber force field”, J. Comput. Chem., 25 (2004), 1157–1174 | DOI

[46] H. J.C. Berendsen, J. P.M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI

[47] J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, “Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys., 23 (1977), 327–341 | DOI

[48] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method”, J. Chem. Phys., 103 (1995), 8577–8593 | DOI

[49] I. Massova, P. A. Kollman, “Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies”, J. Am. Chem. Soc., 121 (1999), 8133–8143 | DOI

[50] B. R. Miller III, T. D. McGee Jr., J. M. Swails, N. Homeyer, H. Gohlke, A. E. Roitberg, “MMPBSA.py: An efficient program for end-state free energy calculations”, J. Chem. Theory Comput., 8 (2012), 3314–3321 | DOI

[51] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, D. E. Shaw, “Improved side-chain torsion potentials for the Amber ff99SB protein force field”, Proteins, 78 (2010), 1950–1958

[52] U. Moebius, L. K. Clayton, S. Abraham, S. C. Harrison, E. L. Reinherz, “The human immunodeficiency virus-gp120 binding-site on CD4 — Delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic-structure”, J. Exp. Med., 176:2 (1992), 507–517 | DOI

[53] U. Olshevsky, E. Helseth, C. Furman, J. Li, W. Haseltine, J. Sodroski, “Identification of individual human-immunodeficiency-virus type-1 gp120 amino-acids important for CD4 receptor-binding”, J. Virol., 64:12 (1990), 5701–5707

[54] Q. Zhao, L. Ma, S. Jiang, H. Lu, S. Liu, Y. He, N. Strick, N. Neamati, A. K. Debnath, “Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4”, Virology, 339:2 (2005), 213–225 | DOI

[55] D. G. Myszka, R. W. Sweet, P. Hensley, M. Brigham-Burke, P. D. Kwong, W. A. Hendrickson, R. Wyatt, J. Sodroski, M. L. Doyle, “Energetics of the HIV gp120-CD4 binding reaction”, Proc. Natl. Acad. Sci. USA, 97:16 (2000), 9026–9031 | DOI

[56] S. Brase, K. Banert, Organic Azides: Syntheses and applications, Wiley, 2009, 536 pp.