Computer modeling and molecular dynamics of polarization switching in the ferroelectric films PVDF and P(VDF-TrFE) on nanoscale
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 131-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, molecular models are used to investigate and analyze the structure and polarization of polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) Langmuir–Blodgett (LB) nanofilms, depending on the structure and composition of the monomers of their polymer and copolymer chains. Quantum-mechanical calculations and modeling, as well as molecular dynamics (MD) simulations based on semi-empirical quantum-chemical methods (such as PM3), show that the energy of the studied PVDF and P (VDF-TrFE) molecular structures, and their polarization switching proceed by homogeneous switching mechanism in the framework of the phenomenological theory of Landau–Ginzburg–Devonshire (LGD) in the linear approximation of low values of the electric field. The magnitude of the resulting critical coercive field is within the $E_C\sim0.5\dots2.0$ GV/m, which is consistent with experimental data. It is also found that the uniform polarization switching mechanism of the polymer chains PVDF and P (VDF-TrFE) is due to the quantum properties of the molecular orbitals of the electron subsystem: the applied electric field induces a gradual shift of the electron "clouds" density (electron polarizability), which in turn causes a gradual shift of the nuclear cores, in accordance with the principle of minimum total energy of the system, and this leads eventually, when it reaches a critical point (bifurcation) — to overturn of the entire chain and a sharp decrease in the total energy of the total system to its energetically more favorable state. This is clearly seen in both the polarization hysteresis loops, and the total energy changes. In this case, the turnover chain time, obtained by molecular dynamics within semi-empirical quantum-chemical PM3 approach in a limited Hartree–Fock approximation, when approaching this critical point, increases sharply, tending to infinity, which corresponds to the theory of LGD.
@article{MBB_2015_10_1_a8,
     author = {V. E. Gevorkyan and E. V. Paramonova and L. A. Avakyan and V. S. Bystrov},
     title = {Computer modeling and molecular dynamics of polarization switching in the ferroelectric films {PVDF} and {P(VDF-TrFE)} on nanoscale},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {131--153},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a8/}
}
TY  - JOUR
AU  - V. E. Gevorkyan
AU  - E. V. Paramonova
AU  - L. A. Avakyan
AU  - V. S. Bystrov
TI  - Computer modeling and molecular dynamics of polarization switching in the ferroelectric films PVDF and P(VDF-TrFE) on nanoscale
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 131
EP  - 153
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a8/
LA  - ru
ID  - MBB_2015_10_1_a8
ER  - 
%0 Journal Article
%A V. E. Gevorkyan
%A E. V. Paramonova
%A L. A. Avakyan
%A V. S. Bystrov
%T Computer modeling and molecular dynamics of polarization switching in the ferroelectric films PVDF and P(VDF-TrFE) on nanoscale
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 131-153
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a8/
%G ru
%F MBB_2015_10_1_a8
V. E. Gevorkyan; E. V. Paramonova; L. A. Avakyan; V. S. Bystrov. Computer modeling and molecular dynamics of polarization switching in the ferroelectric films PVDF and P(VDF-TrFE) on nanoscale. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 131-153. http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a8/

[1] Blinov L. M., Fridkin V. M., Palto S. P., Bune A. V., Dauben P. A., Dyusharm S., “Dvumernye segnetoelektriki”, Uspekhi fizicheskikh nauk, 170:3 (2000), 247–262 | DOI

[2] Bune A. V., Fridkin V. M., Ducharme S., Blinov L. M., Palto S. P., Sorokin A. V., Yudin S. G., Zlatkin A., “Two-dimensional ferroelectric films”, Nature (London), 391 (1998) | DOI

[3] Qu H., Yao W., Zhang J., Dusharme S., Dowben P. A., Sorokin A. V., Fridkin V. M., “Nanoscale polarization manipulation and conductance switching in ultrathin films of a ferroelectric copolymer”, Appl. Phys. Lett., 82:24 (2003), 4322–4324 | DOI

[4] Fridkin V., Ducharme S., Ferroelectricity at the Nanoscale. Basics and Applications, Springer-Verlag, Berlin, 2014, 122 pp.

[5] Kliem H., Tardos-Morgane R., “Extrinsic versus intrinsic ferroelectric switching: experimental investigations using ultra-thin PVDF Langmuir–Blodgett films”, J. Phys. D: Appl. Phys., 38 (2005) | DOI

[6] Fridkin V. M., Ducharme S., “General Features of the Intrinsic Ferroelectric Coercive Field”, Fizika tverdogo tela, 43:7 (2001)

[7] Tolstousov A., Gaynutdinov R., Tadros-Morgane R., Judin S., Tolstikhina A., Kliem H., Ducharme S., Fridkin V., “Ferroelectric Properties of Langmuir–Blodgett Copolymer Films at the Nanoscale”, Ferroelectrics, 354 (2007), 99–105 | DOI

[8] Gaynutdinov R. V., Lysova O. A., Yudin S. G., Tolstikhina A. L., Kholkin A. L., Fridkin V. M., Ducharme S., “Polarization switching kinetics of ferroelectric nanomesas of vinylidene fluoride-trifluoroethylene copolymer”, Appl. Phys. Lett., 95 (2009), 023303 | DOI

[9] Gaynutdinov R. V., Yudin S., Ducharme S., Fridkin V., “Homogeneous switching in ultrathin ferroelectric films”, J. Phys.: Condens. Matter, 24 (2012), 015902 | DOI

[10] Bune A. V., Zhu C., Ducharme S., Blinov L. M., Fridkin V. M., Palto S. P., Petukhova N. G., Yudin S. G., “Piezoelectric and pyroelectric properties of ferroelectric Langmuir–Blodgett polymer films”, J. Appl. Phys., 85:11 (1999), 7869–7873 | DOI

[11] Bystrov V. S., Bdikin I. K., Kiselev D. A., Yudin S. G., Fridkin V. M., Kholkin A. L., “Nanoscale polarization pattering of ferroelectric Langmuir–Blodgett P(VDF-TrFE) films”, J. Phys. D: Appl. Phys., 40 (2007), 4571–4577 | DOI

[12] Bystrov V. S., Paramonova E. V., Dekhtyar Yu., Pullar R. C., Katashev A., Polyaka N., Bystrova A. V., Sapronova A. V., Fridkin V. M., Kliem H., Kholkin A. L., “Polarizarion of poly(vinylidene fluoride) and poly(vinylidene fluoride-trifluoroethylene) thin films revealed by emission spectroscopy with computational simulation during phase transition”, J. Appl. Phys., 111 (2012), 104113 | DOI

[13] Egusa S., Wang Z., Chocat N., Ruff Z. M., Stolyarov A. M., Shemuly D., Sorin F., Rakich P. T., Joannopoulos J. D., Fink Y., Nature Materials, 9 (2010), 643–648 | DOI

[14] Hu Z., Tian M., Nysten B., Jonas A. M., Nature Materials, 8 (2009), 62–67 | DOI

[15] Amer S., Badawy W., Current Pharmaceutical Biotechnology, 6 (2005), 57–64 | DOI

[16] Bystrov V. S., Bystrova N. K., Paramonova E. V., Vizdrik G., Sapronova A. V., Kuehn M., Kliem H., Kholkin A. L., “First principle calculations of molecular polarization switching in P(VDF-TrFE) ferroelectric thin Langmuir–Bliodgett films”, J. Phys: Condens. Matter, 19 (2007), 456210 | DOI

[17] Bystrov V., Bystrova N., Kiselev D., Paramonova E., Kuehn M., Kliem H., Kholkin A., “Molecular model of polarization switching and nanoscale physical properties of thin ferroelectric Langmuir–Blodgett P(VDF-TrFE) films”, Integrated Ferroelectrics, 99 (2008), 31–40 | DOI

[18] Hereida A., Machado M., Bdikin I., Gracio J., Yudin S., Fridkin V. M., Delgadillo I., Kholkin A. L., “Preferred deposition of phospholipids onto ferroelectric P(VDF-TrFE) films via polarization pattering”, J. Phys. D: Appl. Phys., 43:33 (2010), 335301 | DOI

[19] Bystrov V. S., Seyedhosseini E., Kopyl S., Bdikin I. K., Kholkin A. L., “Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements”, J. Appl. Phys., 116 (2014), 066803 | DOI

[20] Callegari B., Belangero W. D., “Analysis of the interface formed among the poli(viniilidene) fluoride (piezoelectric and nonpiezoelectric) and the bone tissue of rats”, Acta Ortop. Bras., 12:3 (2004), 160–166 | DOI | MR

[21] Bystrov V. S., Bystrova N. K., Paramonova E. V., Dekhtyar Yu. D., “Interaction of charged hydroxyapatite and living cells. I: Hydroxyapatite polarization properties”, Mathematical biology and bioinformatics, 4:2 (2009), 7–11 | DOI

[22] PERCERAMICS Report Summary, (data obrascheniya: 27.02.2015) http://cordis.europa.eu/result/rcn/51676_en.html

[23] Dekhtyar Yu., Bystrov V., Khlusov I., Polyaka N., Sammons R., Tyulkin F., “Hydroxyapatite Surface Nanoscaled characterization and Electrical Potential F Functionalization to Engineer Osteoblasts Attachment and Generate Bone Tissue”, The Society For Biomaterials 2011 Annual Meeting Exposition (April 13–16, 2011, Orlando, Florida, USA), A 519

[24] HyperChem Professional 8.0., (data obrascheniya: 27.02.2015) http://www.hyper.com/?tabid=360

[25] Hamprecht F. A., Cohen A. J., Tozer D. J., Handy N. C., J. Chem. Phys., 109 (1998), 6264–6271 | DOI

[26] Becke A. D., Phys. Rev. A, 38 (1988), 3098 | DOI

[27] Johnson B. G., Gill P. M., Pople J. A., J. Chem. Phys., 98 (1993), 5612 | DOI

[28] Perdew J. P., Chevary J. A., Volsko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C., Phys. Rev. B, 46 (1992), 6671 | DOI

[29] Zhao Y., Truhlar D. G., Accounts of Chemical Research, 41:2 (2008), 157–167 | DOI

[30] Stewart J. J. P., J. Comput. Chem., 14 (1989), 209–220 | DOI

[31] Stewart J. J. P., “Optimization of parameters for semiempirical methods. V: Modification of NDDO approximations and application to 70 elements”, J. Mol. Model., 13 (2007), 1173–1213 | DOI

[32] Bystrov V. S., Paramonova E. V., Bikin I. K., Bystrova A. V., Pullar R. C., Kholkin A. L., “Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF)”, J. Mol. Model., 19 (2013), 3591–3602 | DOI

[33] Bystrov V. S., “Molecular modeling and molecular dynamics simulation of the polarization switching phenomena in the ferroelectric polymers PVDF at the nanoscale”, Physica B: Condensed Matter, 432 (2014), 21–25 | DOI

[34] Scott J. F., Ferroelectric Mem., Springer, Berlin, 2000, 248 pp.

[35] Tagantsev A. K., Cross L. E., Fousek J., Domains in Ferroic Crystals and Thin Films, Springer, New York, 2010, 821 pp.

[36] Vizdrik G., Ducharme S., Fridkin V. M., Yudin S. G., “Kinetics of ferroelectric switching in ultrathin films”, Phys. Rev. B, 68 (2003) | DOI

[37] Kolmogorov A. N., Izvestiya AN SSSR. Seriya matematicheskaya, 1:3 (1937), 355–359

[38] Avrami M., “Kinetics of phase change. II transformation-time relations for random distribution of nuclei”, J. Chem. Phys., 8 (1940) | DOI

[39] Ishibashi Y., Takagi Y., J. Phys. Soc. Jpn., 31:2 (1971), 506–510 | DOI

[40] Ducharme S., Fridkin V. M., Bune A. V., Palto S. P., Blinov L. M., Petukhova N. N., Yudin S. G., “Intrinsic ferroelectric coercive field”, Phys. Rev. Lett., 84 (2000) | DOI

[41] Tashiro K., “Crystal structure and phase transition of PVDF and related copolymers”, Ferroelectric Polymers, ed. Nalwa H. S., Dekker, New York, 1995, 63–182

[42] Furukawa T., Phase Transitions: A Multinational Journal, 18 (1989), 143–211 | DOI

[43] Nakhmanson S. M., Nardelli M. B., Bernholc J., “Ab initio Studies of Polarization and Piezoelectricity in Vinylidene Fluoride and BN-Based Polymers”, Phys. Rev. Lett., 92 (2004), 11 | DOI

[44] Nakhmanson S. M., Nardelli M. B., Bernholc J., “Collective polarization effects in $\beta$-polyvinylidene fluoride and its copolymers with tri- and tetrafluoroethylene”, Phys. Rev. B, 72 (2005) | DOI

[45] Su H., Strachan A., Goddard W. A. III, “Density functional theory and molecular dynamics studies of the energetics and kinetics of electroactive polymers: PVDF and P(VDF-TrFE)”, Phys. Rev. B, 70 (2004) | DOI

[46] Duan C. G., Mei W. N., Yin W. G., Liu J., Hardy J. R., Ducharme S., Dowben P. A., “Simulations of ferroelectric polymer film polarization: The role of dipole interactions”, Phys. Rev. B, 69 (2004) | DOI