Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2015_10_1_a7, author = {K. S. Sergeev and T. E. Vadivasova and A. P. Chetverikov}, title = {Dynamics of ensemble of active brownian particles controlled by noise}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {72--87}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a7/} }
TY - JOUR AU - K. S. Sergeev AU - T. E. Vadivasova AU - A. P. Chetverikov TI - Dynamics of ensemble of active brownian particles controlled by noise JO - Matematičeskaâ biologiâ i bioinformatika PY - 2015 SP - 72 EP - 87 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a7/ LA - ru ID - MBB_2015_10_1_a7 ER -
%0 Journal Article %A K. S. Sergeev %A T. E. Vadivasova %A A. P. Chetverikov %T Dynamics of ensemble of active brownian particles controlled by noise %J Matematičeskaâ biologiâ i bioinformatika %D 2015 %P 72-87 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a7/ %G ru %F MBB_2015_10_1_a7
K. S. Sergeev; T. E. Vadivasova; A. P. Chetverikov. Dynamics of ensemble of active brownian particles controlled by noise. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 72-87. http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a7/
[1] Romanczuk P., Bar M., Ebeling W., Lindner B., Schimansky-Geier L., “Active Brownian particles: From individual to collective stochastic dynamics”, Eur. Phys. J. Special Topics, 2012
[2] Großmann R., Schimansky-Geier L., Romanczuk P., “Active Brownian particles and active fluctuations with velocity-alignment”, New Journal of Physics, 2012
[3] Schweitzer F., Ebeling W., Tilch B., “Complex motion of Brownian particles with energy depots”, Phys. Rev. Lett., 80 (1998), 5044–5047 | DOI
[4] Ebeling W., Schweitzer F., Tilch B., “Active Brownian particles with energy depots modeling animal mobility”, Biosystems, 49 (1999), 17–29 | DOI
[5] Erdman U., Ebeling W., Schimansky-Geier L., Schweitzer F., “Brownian particles far from equilibrium”, Eur. Phys. J. B, B15 (2000), 105–113 | DOI
[6] Ebeling W., Schimansky-Geier L., Romanovsky Yu., Stochastic Dynamics of Reacting Biomolecules, World Scientific, Singapore, 2002
[7] Schweitzer F., Brownian Agents and Active Particles. Collective Dynamics in the Natural and Social Sciences, Springer, Berlin, 2003 | MR
[8] Chetverikov A., Ebeling W., Velarde M. G., “Thermodynamic and phase transitions in dissipative and active Morse chain”, Eur. Phys. J. B, 44 (2005), 509–519 | DOI
[9] Chetverikov A. P., Ebeling V., Velarde M. G., “Solitony i klastery v odnomernykh ansamblyakh vzaimodeistvuyuschikh brounovskikh chastits”, Izvestiya Saratovskogo universiteta. Seriya Fizika, 6:1/2 (2006), 28–41 | MR
[10] Schienbein M., Gruler H., “Langevin equation, Fokker–Planck equation and cell migration”, Bull. Math. Biol., 55:3 (1993), 585–608 | DOI
[11] Romanczuk P., Erdmann U., “Collective motion of active Brownian particles in one dimension”, Eur. Phys. J. Special Topics, 187 (2010), 127–134 | DOI
[12] Romanczuk P., Schimansky-Geier L., “Mean-field theory of collective motion due to velocity alignment”, Ecol. Complexity, 10 (2012), 82–92 | DOI
[13] Sergeev K. S., Vadivasova T. E., Chetverikov A. P., “Indutsirovannyi shumom perekhod v malom ansamble aktivnykh brounovskikh chastits”, Pisma v ZhTF, 40:21 (2014), 88–96
[14] Arnold L., Random Dynamical Systems, Springer, Berlin, 2003 | MR
[15] Nikitin N. N., Razevig V. D., “Metody tsifrovogo modelirovaniya stokhasticheskikh differentsialnykh uravnenii i otsenka ikh pogreshnostei”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 18:1 (1978), 107