Ground vegetation modeling through functional species groups and patches in the forest floor
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 15-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have developed a system of plant functional groups for modeling dynamics of forest ground vegetation. Ecological and coenotic traits of species together with species life form and biomass values were used to classify species into the functional groups. Ground vegetation patches dominated by species of different plant functional groups were distinguished in the forest floor. We have characterized biomass of these patches by applying of statistical analysis of published data and results of our own field investigations combined into the database "Biomass". Biomass of vascular plants and bryophytes quite well differs between the patches. Variations of above and below ground biomass of vascular plants are minimal within the types of forest floor patches as compared to their variations within the plant functional groups and forest types. Database "Elements" on element concentrations of herbaceous species and cryptogams was also developed on the basis of results of field investigations in the North and the Middle Taiga. The functional groups of species well differ on the concentration of elements in plants forming a group. We have proposed a conceptual model of dynamics of ground forest vegetation; a model compatible with the individual-based EFIMOD model of forest growth and elements cycles in forest ecosystems. Spatial unit of the ground vegetation model is the same as spatial unit of the EFIMOD ($0.5\times0.5$ m); it is a patch of the forest floor dominated by species from one or more functional groups.
@article{MBB_2015_10_1_a5,
     author = {L. G. Khanina and M. V. Bobrovsky and V. E. Smirnov and I. S. Grozovskaya and M. S. Romanov and N. V. Lukina and L. G. Isaeva},
     title = {Ground vegetation modeling through functional species groups and patches in the forest floor},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {15--33},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a5/}
}
TY  - JOUR
AU  - L. G. Khanina
AU  - M. V. Bobrovsky
AU  - V. E. Smirnov
AU  - I. S. Grozovskaya
AU  - M. S. Romanov
AU  - N. V. Lukina
AU  - L. G. Isaeva
TI  - Ground vegetation modeling through functional species groups and patches in the forest floor
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 15
EP  - 33
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a5/
LA  - ru
ID  - MBB_2015_10_1_a5
ER  - 
%0 Journal Article
%A L. G. Khanina
%A M. V. Bobrovsky
%A V. E. Smirnov
%A I. S. Grozovskaya
%A M. S. Romanov
%A N. V. Lukina
%A L. G. Isaeva
%T Ground vegetation modeling through functional species groups and patches in the forest floor
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 15-33
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a5/
%G ru
%F MBB_2015_10_1_a5
L. G. Khanina; M. V. Bobrovsky; V. E. Smirnov; I. S. Grozovskaya; M. S. Romanov; N. V. Lukina; L. G. Isaeva. Ground vegetation modeling through functional species groups and patches in the forest floor. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 15-33. http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a5/

[1] Komarov A. S., Chertov O. G., “Osnovnye napravleniya v modelirovanii produktsionnykh protsessov i dinamiki struktury lesnykh soobschestv”, Modelirovanie dinamiki organicheskogo veschestva v lesnykh ekosistemakh, ed. Kudeyarov V. N., Nauka, M., 2007, 33–39 | MR

[2] Pretzsch H., “Biometrical models as tools for forest ecosystem management”, Plant growth modeling and applications, Proceedings of PMA06, IEEE Computer Society, Los Alamitos, 2006, 209–215

[3] Segura M., Ray D., Maroto C., “Decision support systems for forest management: A comparative analysis and assessment”, Computers and Electronics in Agriculture, 101 (2014), 55–67 | DOI

[4] Borges J. G., Nordström E. M., Garcia-Gonzalo J., Hujala T., Trasobares A., Computer-based tools for supporting forest management. The experience and the expertise world-wide, Swedish University of Agricultural Sciences, Umeå, 2014, 503 pp.

[5] Komarov A. S., Khanina L. G., “Vtoraya natsionalnaya konferentsiya s mezhdunarodnym uchastiem «Matematicheskoe modelirovanie v ekologii. Ekomatmod-2011»”, Matematicheskaya biologiya i bioinformatika, 7:1 (2012), 1–3 | DOI

[6] Chertov O. G., Komarov A. S., “Problemy i perspektivy v modelirovanii lesnykh ekosistem”, Modelirovanie dinamiki organicheskogo veschestva v lesnykh ekosistemakh, ed. Kudeyarov V. N., Nauka, M., 2007, 58–61

[7] De Vries W., Wamelink W., Van Dobben H., Kros H., Jan Reinds G., Mol-Dijkstra J., Smart S., Evans C., Rowe E., Belyazid S. et al., “Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition: an overview”, Ecological Applications, 20 (2010), 60–79 | DOI

[8] Boulangeat I., Philippe P., Abdulhak S., Douzet R., Garraud L., Lavergne S., Lavorel S., Van Es J., Vittoz P., Thuiller W., “Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology”, Global Change Biology, 18 (2012), 3464–3475 | DOI

[9] Lukina N. V., Polyanskaya L. M., Orlova M. A., Pitatelnyi rezhim pochv severotaezhnykh lesov, ed. Karpachevskii L. O., Nauka, M., 2008, 342 pp.

[10] Bobrovskii M. V., Lesnye pochvy Evropeiskoi Rossii: bioticheskie i antropogennye faktory formirovaniya, Tovarischestvo nauchnykh izdanii KMK, M., 2010, 359 pp.

[11] Orlova M. A., Lukina N. V., Tutubalina O. V., Smirnov V. E., Isaeva L. G., Hofgaard A., “Soil nutrient's spatial variability in forest-tundra ecotones on the Kola Peninsula, Russia”, Biogeochemistry, 113 (2013), 283–305 | DOI

[12] Tuzhilkina V. V., “Struktura fitomassy i zapasy ugleroda v rasteniyakh napochvennogo pokrova lesov na severo-vostoke Evropeiskoi Rossii”, Rastitelnye resursy, 48:1 (2012), 44–50 | MR

[13] Atkin A. S., Atkina L. I., “Massa travyano-kustarnichkovogo yarusa v lesnykh fitotsenozakh”, Produktivnost lesnykh fitotsenozov, ILiD SO AN SSSR, Krasnoyarsk, 1984, 17–27

[14] Remezova G. L., “Nakoplenie organicheskogo veschestva v protsesse razvitiya travyanogo pokrova dubravy”, Bot. zhurn., 49:6 (1964), 894–900

[15] Tuzhilkina V. V., “Nadzemnaya fitomassa i uglerod nizhnikh yarusov rastitelnosti elovykh fitotsenozov”, Vestnik Instituta Komi NTs UrO RAN, 2011, no. 9, 4–6 | MR

[16] Isaev A. S. (red.), Monitoring biologicheskogo raznoobraziya lesov Rossii: metodologiya i metody, Nauka, M., 2008, 453 pp.

[17] Bakkenes M., Eickhout B., Alkemade R., “Impacts of different climate stabilisation scenarios on plant species in Europe”, Global Environmental Change, 16 (2006), 19–28 | DOI

[18] Bobbink R., Hicks K., Galloway J., Spranger T., Alkemade R., Ashmore M., Bustamante M., Cinderby S., Davidson E., Dentener F. et al., “Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis”, Ecological applications, 20 (2010), 30–59 | DOI

[19] Baron J. S., Barber M., Agboola J. I., Allen E. B., Bealey W. J., Bobbink R., Bobrovsky M. V., Bowman W. D., Branquinho C., Bustamente M. M. C. et al., “The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity”, Nitrogen deposition, critical loads and biodiversity, eds. Sutton M. A., Mason K. E., Sheppard L. J., Sverdrup H., Haeuber R., Hicks W. K., Springer, 2014, 465–480 | DOI

[20] Komarov A. S., Khanina L. G., Bobrovskii M. V., Mikhailov A. V., Smirnov V. E., Bykhovets S. S., “Modelirovanie struktury i dinamiki bioraznoobraziya rastitelnosti lesnykh ekosistem”, Monitoring biologicheskogo raznoobraziya lesov Rossii: metodologiya i metody, ed. Isaev A. S., Nauka, M., 2008, 285–314

[21] Kellomäki S., Väisänen H., “Application of a gap model for the simulation of forest ground vegetation in boreal conditions”, Forest Ecology and Management, 42:1–2 (1991), 35–47 | DOI

[22] Kellomäki S., Väisänen H., Hänninen H., Kolström T., Lauhanen R., Mattila U., Pajari B., SIMA: a model for forest succession based on the carbon and nitrogen cycles with application to silvicultural management of the forest ecosystem, Silva Carelica, 22, University of Joensuu, Faculty of Forestry, Joensuun, 1992, 85 pp.

[23] Kellomäki S., Väisänen H., Strandman H., FinnFor: a model for calculating the response of the boreal forest ecosystem to climate changes, Research Notes, 6, University of Joensuu, Faculty of Forestry, Joensuun, 1993, 120 pp.

[24] Skov F., Svenning J. C., “Predicting plant species richness in a managed forest”, Forest Ecology and Management, 180:1–3 (2003), 583–593 | DOI

[25] Boulangeat I., Georges D., Thuiller W., “FATE-HD: a spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale”, Global Change Biology, 20 (2014), 2368–2378 | DOI

[26] The 1979 Geneva Convention on Long-range Transboundary Air Pollution, (data obrascheniya: 04.11.2014) http://www.unece.org/env/lrtap/lrtap_h1.html

[27] Latour R., Reiling R., “A multiple stress model for vegetation ("move"): a tool for scenario studies and stand-ard-setting”, Science of the Total Environment, 134 (1993), 1513–1526 | DOI

[28] Kros J. G. J., Reinds W., De Vries W., Latour J. B., Bollen M. J. S., “Modelling abiotic site factors in response to atmospheric deposition and upward seepage”, Scenario studies for the rural environment: selected and edited proceedings of the symposium scenario studies for the rural environment (Wageningen, the Netherlands, 12–15 September, 1994), eds. J. F. T. Schoute, P. A. Finke, F. R. Veeneklaas, H. P. Wolfert, Kluwer, Dordrecht, 1995, 445–448

[29] Schouwenberg E. P. A. G., Houweling H., Jansen M. J. W., Kros J., Mol-Dijkstra J. P., Uncertainty propagation in model chains: a case study in nature conservancy, Alterra. Green World Research, Wageningen, 2000, 90 pp.

[30] Wamelink G. W. W., ter Braak C. J. F., van Dobben H. F., “Changed in large-scale patterns of plant biodiversity predicted from environmental economic scenarios”, Landscape Ecology, 18 (2003), 513–527 | DOI

[31] Cosby B. J., Ferner R. C., Jankins A., Wright R. F., “Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model”, Hydrology and earth system sciences, 5 (2001), 499–517 | DOI

[32] Smart S., Rowe E., Evans C., Roy D., Moy I., Bullock J., Emmett B., Vegetation module for dynamic modeling, UKREATE Terrestrial Umbrella: Effects of Eutrophication and Acidification on Terrestrial Ecosystems: CEH Contract Report, Defra Contract No CPEA 18, 2007, 199–218 (data obrascheniya 22.01.2015) http://nora.nerc.ac.uk/3191/1/Final_Final_Defra_ReportAmdUKREATETerrUmbrella.pdf#page=215

[33] Ellenberg H., Weber H. E., Dull R., Wirth V., Werner W., Paulisen D., Zeigerwerte von Pflanzen in Mitteleuropa [Indicator values of plants in Central Europe], Scripta Geobotanica, 18, Verlag Erich Goltze KG, Gottingen, 1992, 258 pp.

[34] Belyazid S., Kurz D., Braun S., Sverdrup H., Rihm B., Hettelinghf J. P., “A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate”, Environmental pollution, 159:3 (2011), 789–801 | DOI

[35] Sverdrup H., Belyazid S., Nihlgard B., Ericson L., “Modelling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management at in Sweden 1500–2100 A.D.”, Water, air, and soil pollution: Focus, 7 (2007), 163–179 | DOI

[36] Belyazid S., Svedrup H., Nihlgard B., “Manual for setting flora parameters for the Veg model”, CCE Status Report, 2011, 181–184

[37] Kudeyarov V. N. (red.), Modelirovanie dinamiki organicheskogo veschestva v lesnykh ekosistemakh, Nauka, M., 2007, 380 pp.

[38] Komarov A. S., Chertov O. G., Zudin S. L., Nadporozhskaya M. A., Mikhailov A. V., Bykhovets S. S., Zudina E. V., Zoubkova E. V., “EFIMOD 2 — a model of growth and cycling of elements in boreal forest ecosystems”, Ecological Modelling, 170:2–3 (2003), 373–392 | DOI

[39] Chertov O. G., Komarov A. S., Nadporozhskaya M. A., Bykhovets S. S., Zudin S. L., “ROMUL — a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling”, Ecological Modelling, 138:1–3 (2001), 289–308 | DOI

[40] Komarov A. S., Khoraskina Yu. S., Bykhovets S. S., Bezrukova M. G., Chertov O. G., “Modelirovanie dinamiki organicheskogo veschestva i elementov pochvennogo pitaniya v mineralnoi pochve i lesnoi podstilke”, Matematicheskaya biologiya i bioinformatika, 7:1 (2012), 162–176 (data obrascheniya: 05.11.2014) http://www.matbio.org/2012/Komarov2012(7_162).pdf | DOI

[41] Mikhailov A. V., “Model dinamiki biomassy zhivogo napochvennogo pokrova v lesu”, Matematika, kompyuter, obrazovanie, v. 8, ed. Riznichenko G. Yu., Progress-Traditsiya, M., 2002, 139–145

[42] Khanina L. G., Grozovskaya I. S., Smirnov V. E., Romanov M. S., Bobrovskii M. V., “Analiz bazy dannykh po biomasse lesnogo napochvennogo pokrova dlya modelirovaniya ego dinamiki v krugovorotnykh modelyakh lesnykh ekosistem”, Khvoinye borealnoi zony, 31:1–2 (2013), 22–29

[43] Zaugolnova L. B., Khanina L. G., “Opyt razrabotki i ispolzovaniya baz dannykh v lesnoi fitotsenologii”, Lesovedenie, 1996, no. 1, 76–83

[44] Grokhlina T. I., Khanina L. G., “Avtomatizatsiya obrabotki geobotanicheskikh opisanii po ekologicheskim shkalam”, Printsipy i sposoby sokhraneniya bioraznoobraziya, Materialy II Vserossiiskoi nauchnoi konferentsii, Mar. gos. un-t, Ioshkar-Ola, 2006, 87–89

[45] Smirnov V. E., “SpeDiv — programma dlya analiza raznoobraziya rastitelnosti”, Printsipy i sposoby sokhraneniya bioraznoobraziya, Materialy II Vserossiiskoi nauchnoi konferentsii, Mar. gos. un-t, Ioshkar-Ola, 2006, 142–143 | MR

[46] Ramenskii L. G., Vvedenie v kompleksnoe pochvenno-geobotanicheskoe issledovanie zemel, Selkhozgiz, M., 1938, 620 pp.

[47] Orlova M. A., Lukina N. V., Kamaev I. O., Smirnov V. E., Kravchenko T. V., “Mozaichnost lesnykh biogeotsenozov i plodorodie pochv”, Lesovedenie, 2011, no. 6, 39–48

[48] Orlova M. A., “Elementarnaya edinitsa lesnogo biogeotsenoticheskogo pokrova dlya otsenki ekosistemnykh funktsii lesov”, Trudy Karelskogo nauchnogo tsentra RAN. Ser. Ekologicheskie issledovaniya, 2013, no. 6, 126–132

[49] Grozovskaya I. S., “Bioproduktsionnye kharakteristiki zhivogo napochvennogo pokrova starovozrastnykh pikhto-elnikov severo-vostoka Kostromskoi oblasti”, Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 14:1(6) (2012), 1445–1448

[50] Grozovskaya I. S., “Biomassa napochvennogo pokrova v starovozrastnykh temnokhvoinykh lesakh Kostromskoi oblasti”, Aktualnye problemy biologii i ekologii, Materialy dokladov XXI Vserossiiskoi molodezhnoi nauchnoi konferentsii, posvyaschennoi 70-letiyu A. I. Taskaeva, Komi NTs UrO RAN, Syktyvkar, 2014, 172–177

[51] Khanina L. G., Romanov M. S., Bobrovskii M. V., Lukina N. V., Grozovskaya I. S., Isaeva L. G., Glukhova E. M., Mikhailova N. V., Rubashko G. E., “Bazy dannykh dlya modelirovaniya dinamiki zhivogo napochvennogo pokrova lesnykh ekosistem”, Matematicheskaya biologiya i bioinformatika, Doklady IV Mezhdunarodnoi konferentsii (g. Puschino, 14–19 oktyabrya 2012 g.), ed. Lakhno V. D., MAKS Press, M., 2012, 202–203

[52] ORNL DAAC, (data obrascheniya: 04.11.2014) http://daac.ornl.gov/index.shtml

[53] Vergutz L., Manzoni S., Porporato A., Novais R. F., Jackson R. B., A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves, (data obrascheniya 04.11.2014) http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1106

[54] Nitsenko A. A., “Ob izuchenii ekologicheskoi struktury rastitelnogo pokrova”, Botanicheskii zhurnal, 54:7 (1969), 1002–1014

[55] Zaugolnova L. B., Khanina L. G., Komarov A. S., Smirnova O. V., Popadyuk R. V., Ostrovskii M. A., Zubkova E. V., Glukhova E. M., Palenova M. M., Gubanov V. S. i dr., Informatsionno-analiticheskaya sistema dlya otsenki suktsessionnogo sostoyaniya lesnykh soobschestv, Preprint PNTs RAN, ONTI PNTs RAN, Puschino, 1995, 51 pp.

[56] Smirnova O. V., Khanina L. G., Smirnov V. E., “Ekologo-tsenoticheskie gruppy v rastitelnom pokrove lesnogo poyasa Vostochnoi Evropy”, Vostochno-Evropeiskie lesa (istoriya v golotsene i sovremennost), v. 1, ed. Smirnova O. V., Nauka, M., 2004, 165–175

[57] Smirnov V. E., Khanina L. G., Bobrovskii M. V., “Obosnovanie sistemy ekologo-tsenoticheskikh grupp vidov rastenii lesnoi zony Evropeiskoi Rossii na osnove ekologicheskikh shkal, geobotanicheskikh opisanii i statisticheskogo analiza”, Byull. MOIP. Ser. Biologicheskaya, 111:2 (2006), 36–47

[58] Smirnov V. E., “Funktsionalnaya klassifikatsiya rastenii metodami mnogomernoi statistiki”, Matematicheskaya biologiya i bioinformatika, 2:1 (2007), 1–17 (data obrascheniya: 05.11.2014) http://www.matbio.org/downloads/Smirnov2007(2_1).pdf | DOI | MR

[59] Smirnov V. E., Khanina L. G., Bobrovsky M. V., Validation of the ecological-coenotic groups of vascular plants for European Russian forests on the basis of ecological indicator values, vegetation releves and statistical analysis, (data obrascheniya: 05.11.2014) http://www.impb.ru/index.php?id=div/lce/ecg&lang=eng

[60] McCune B., Grace J. B., Analysis of Ecological Communities, MjM Software Design, Gleneden Beach, 2002, 300 pp.

[61] Grozovskaya I. S., Khanina L. G., Smirnov V. E., Bobrovskii M. V., Romanov M. S., Glukhova E. M., “Biomassa napochvennogo pokrova v elovykh lesakh Kostromskoi oblasti”, Lesovedenie, 2015 (to appear)

[62] The R Project for Statistical Computing, (data obrascheniya: 05.11.2014) http://www.R-project.org/

[63] Legendre P., Legendre L., Numerical ecology, Developments in Environmental Modelling, 24, Elsevier, 2012, 990 pp. | DOI

[64] Bykhovets S. S., Komarov A. S., “Prostoi statisticheskii imitator klimata pochvy s mesyachnym shagom”, Pochvovedenie, 2002, no. 4, 443–452