Bipolaron in anisotropic crystals (arbitrary coupling)
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 283-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to obtaining the bipolaron functional in anisotropic crystals by Buimistrov–Pekar method for an arbitrary electron-phonon coupling. The effect of electron correlations related to the direct dependence of the wave function from the distance between the electrons on bipolaron energy is studied. The single-center and two-center (coaxial configuration) bipolaron models in crystals with anisotropic effective mass for the limiting case of quasi-systems (the system “light axis”) were compared.
@article{MBB_2015_10_1_a16,
     author = {N. I. Kashirina and V. D. Lakhno},
     title = {Bipolaron in anisotropic crystals (arbitrary coupling)},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {283--293},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a16/}
}
TY  - JOUR
AU  - N. I. Kashirina
AU  - V. D. Lakhno
TI  - Bipolaron in anisotropic crystals (arbitrary coupling)
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 283
EP  - 293
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a16/
LA  - ru
ID  - MBB_2015_10_1_a16
ER  - 
%0 Journal Article
%A N. I. Kashirina
%A V. D. Lakhno
%T Bipolaron in anisotropic crystals (arbitrary coupling)
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 283-293
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a16/
%G ru
%F MBB_2015_10_1_a16
N. I. Kashirina; V. D. Lakhno. Bipolaron in anisotropic crystals (arbitrary coupling). Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 283-293. http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a16/

[1] Schafroth M. R., Phys. Rev., 96 (1954), 1149–1149 | DOI

[2] Devreese J. T., Alexandrov A. S., Rep. Prog. Phys., 72 (2009), 066501 | DOI

[3] Kashirina N. I., Lakhno V. D., UFN, 180 (2010), 449–473 | DOI

[4] Lakhno V. D., Sultanov V. B., Biofizika, 56:2 (2011), 230–234

[5] Kashirina N. I., Lakhno V. D., Mathematical biology and bioinformatics, 9 (2014), 430–437 | DOI

[6] Korshunova A. N., Lakhno V. D., Physica E, 60 (2014), 206–209 | DOI

[7] Shigaev A. S., Ponomarev O. A., Lakhno V. D., Mathematical biology and bioinformatics, 8 (2013), 553–664 | DOI

[8] Holstein T., Ann. Phys., 8 (1959), 325–342 | DOI

[9] Deigen M. F., Pekar S. I., ZhETF, 21 (1951), 803–806

[10] Kukushkin L. S., ZhETF, 57 (1970), 1224–1230

[11] Vinetskii V. L., Pashitskii E. A., Yanchuk V. A., ZhSKh, 27 (1986), 181–185

[12] Kashirina N. I., Mozdor E. V., Pashitskij E. A., Sheka V. I., Semiconductor Physics, Quantum Electronics Optoelectronics, 2 (1999), 7–10

[13] Bergman E., J. Phys. and Chem. Solids, 35 (1974), 1433–1436 | DOI

[14] Orbukh V. I., Sheka V. I., Ukrainskii fizich. zhurn., 30 (1985), 771–775

[15] Lee T. D., Low F. E., Pines D., Phys. Rev., 90 (1953), 297–302 | DOI | MR

[16] Buimistrov V. M., Pekar S. I., ZhETF, 32 (1957), 1193–1199

[17] Peeters F. M., Smondyrev M. A., Phys. Rev. B, 43 (1990), 4920–4924 | DOI

[18] Pertzsch B., Rössler U., Solid State Sommunications, 37 (1981), 931–935 | DOI