Using clustering by coupled map lattices for metapopulation dynamics simulation
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 220-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates the phenomena of clustering and multistability in a non-global coupled Ricker population model. The possibility of approximating the clusters dynamics by the smaller dimension systems is demonstrated. It is shown the formation and transformation of clusters is similar to the emergence and transformation of asynchronous modes of approximating systems.
@article{MBB_2015_10_1_a14,
     author = {M. P. Kulakov and E. Ya. Frisman},
     title = {Using clustering by coupled map lattices for metapopulation dynamics simulation},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {220--233},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a14/}
}
TY  - JOUR
AU  - M. P. Kulakov
AU  - E. Ya. Frisman
TI  - Using clustering by coupled map lattices for metapopulation dynamics simulation
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 220
EP  - 233
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a14/
LA  - ru
ID  - MBB_2015_10_1_a14
ER  - 
%0 Journal Article
%A M. P. Kulakov
%A E. Ya. Frisman
%T Using clustering by coupled map lattices for metapopulation dynamics simulation
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 220-233
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a14/
%G ru
%F MBB_2015_10_1_a14
M. P. Kulakov; E. Ya. Frisman. Using clustering by coupled map lattices for metapopulation dynamics simulation. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 220-233. http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a14/

[1] Udwadia F. E., Raju N., “Dynamics of Coupled Nonlinear Maps and Its Application to Ecological Modeling”, Applied Mathematic and Computation, 82 (1997), 137–179 | DOI | MR

[2] Kaneko K., “Relevance of dynamic clustering to biological network”, Phisica D, 75 (1994), 55–73 | DOI

[3] Opdam P., “Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies”, Landscape Ecology, 5:2 (1991), 93–106 | DOI

[4] Wysham D. B., Hastings A., “Sudden Shift Ecological Systems: Intermittency and Transients in the Coupled Riker Population Model”, Bulletin of Mathematical Biology, 70 (2008), 1013–1031 | DOI | MR

[5] Manica V., Silva J. A. L., “Population distribution and synchronized dynamics in a metapopulation model in two geographic scales”, Mathematical Biosciences, 250 (2014), 1–9 | DOI | MR

[6] Kulakov M. P., Frisman E. Ya., “Sinkhronizatsiya 2-tsiklov v sisteme simmetrichno svyazannykh populyatsii, zapas-popolnenie v kotorykh opisyvaetsya funktsiei Rikera”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 18:6 (2010), 25–41 | MR

[7] Kulakov M. P., Aksenovich T. I., Frisman E. Ya., “Podkhody k opisaniyu prostranstvennoi dinamiki migratsionno-svyazannykh populyatsii: analiz sinkhronizatsii tsiklov”, Regionalnye problemy, 16:1 (2013), 5–15

[8] Kulakov M. P., “O vozmozhnosti ispolzovaniya effekta klasterizatsii v sistemakh svyazannykh otobrazhenii dlya opisaniya dinamiki metapopulyatsii”, Regionalnye problemy, 18:2 (2014), 28–34 | MR

[9] Oppo G.-L., Kapral R., “Discrete models for the formation and evolution of spatial structure in dissipative systems”, Phys. Rev. A, 33:6 (1984), 4219–4231 | DOI | MR

[10] Waller I., Kapral R., “Spatial and temporal structure in systems of coupled nonlinear oscillators”, Phys. Rev. A, 30:4 (1986), 2047–2055 | DOI | MR

[11] Kuznetsov S. P., “Universalnost i podobie svyazannykh sistem Feigenbauma”, Izv. Vuzov: Radiofizika, 27:8 (1985), 991–1007

[12] Kaneko K., “Clustering, coding, switching, hierarchical, ordering, and control in network of chaotic elements”, Physica D, 41 (1990), 137–172 | DOI | MR

[13] Popovych O., Pikovsky A., Maistrenko Yu., “Cluster-splitting bifurcation in a system of coupled maps”, Physica D, 168–169 (2002), 106–125 | DOI | MR

[14] Ivanova A. S., Kuznetsov S. P., “Volny klasteizatsii v tsepochke sistem, kazhdaya iz kotorykh soderzhit nabor elementov s vnutrennei globalnoi svyazyu. Izvestiya vysshikh uchebnykh zavedenii”, Prikladnaya nelineinaya dinamika, 11:4–5 (2003), 80–88

[15] Kulakov M. P., Frisman E. Ya., “Basseiny prityazheniya klasterov v sistemakh svyazannykh otobrazhenii”, Nelineinaya dinamika, 11:1 (2015), 51–76

[16] Kulakov M. P., Revutskaya O. L., “Primenenie metapopulyatsionnogo podkhoda k analizu prostranstvenno-vremennoi dinamiki promyslovykh zhivotnykh (na primere populyatsii kabana i izyubrya)”, Regionalnye problemy, 14:2 (2011), 12–20

[17] Hanski I., Gaggiotti O. (eds.), Ecology, Genetics and Evolution of Metapopulations, Academic Press, London, 2004, 696 pp.