Kinks behavior near the boundaries separating homogeneous regions of DNA
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 164-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we derive a new modification of the sine-Gordon equation that is suitable for simulation of angular oscillations of nitrous bases in a heterogeneous DNA. The equation is applied to study the behavior of nonlinear conformational waves — kinks — near the boundaries separating homogeneous regions in the DNA sequence.
@article{MBB_2015_10_1_a10,
     author = {A. A. Grinevich and L. V. Yakushevich},
     title = {Kinks behavior near the boundaries separating homogeneous regions of {DNA}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {164--177},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a10/}
}
TY  - JOUR
AU  - A. A. Grinevich
AU  - L. V. Yakushevich
TI  - Kinks behavior near the boundaries separating homogeneous regions of DNA
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 164
EP  - 177
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a10/
LA  - en
ID  - MBB_2015_10_1_a10
ER  - 
%0 Journal Article
%A A. A. Grinevich
%A L. V. Yakushevich
%T Kinks behavior near the boundaries separating homogeneous regions of DNA
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 164-177
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a10/
%G en
%F MBB_2015_10_1_a10
A. A. Grinevich; L. V. Yakushevich. Kinks behavior near the boundaries separating homogeneous regions of DNA. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 164-177. http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a10/

[1] Englander S. W., Kallenbach N. R., Heeger A. J., Krumhansl J. A., Litwin S., “Nature of the open state in long polynucleotide double helices: possibility of soliton excitations”, Proc. Natl. Acad. Sci. USA, 77 (1980), 7222–7226 | DOI

[2] Yakushevich L. V., Ryasik A. A., “Dynamical characteristics of DNA kinks and antikinks”, Computer research investigations and modeling, 4:1 (2012), 209–217

[3] Yakushevich L. V., Krasnobaeva L. A., Shapovalov A. V., Quintero N. R., “One- and two-soliton solutions for DNA”, Biofizika, 50 (2005), 450–455

[4] Salerno M., “Discrete model for DNA-promoter dynamics”, Phys. Rev. A, 44 (1991), 5292–5297 | DOI | MR

[5] Lennholm E., Hornquist M., “Revisiting Salernos sine-Gordon model of DNA: active regions and robustness”, Physica D: Nonlinear Phenomena, 177 (2003), 233–241 | DOI

[6] Cuenda S., Sanchez A., “Nonlinear excitations in DNA: Aperiodic models versus actual genome sequences”, Phys. Rev. E, 70:5 (2004), 051903 | DOI

[7] Yakushevich L. V., Krasnobaeva L. A., “A new approach to studies of non-linear dynamics of kinks activated in inhomogeneous polynucleotide chains”, Int. J. Nonl. Mech., 43 (2008), 1074–1081 | DOI

[8] Grinevich A. A., Ryasik A. A., Yakushevich L. V., “The dynamics of polynucleotide chain consisting of two different homogeneous sequences, divided by interface”, Computer research and modeling, 5:2 (2013), 241–254

[9] Grinevich A. A., Ryasik A. A., Yakushevich L. V., “Trajectories of kinks movement in inhomogeneous potential field of DNA”, Proceedings of the Conference ICMBB5, V International Conference on Mathematical Biology and Bioinformatics (2010, Pushchino, Russia), MAKS Press, M., 2014, 34–35

[10] Scott A. J., “A nonlinear Klein-Gordon equation”, Am. Phys., 37 (1969), 52–61 | DOI

[11] Grinevich A. A., Ryasik A. A., Yakushevich L. V., Zakiryaniv F. K., Numerical modeling of nonlinear conformation waves in inhomogeneous sequences of DNA, Certificate of registration of the computer program No 2014616737, Russian Federal Service for Intellectual Property (Rospatent), 2014