Stem multiplets: a new approach to the description of tertiary RNA motifs
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 54-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an approach allowing one to describe complex fragments of RNA tertiary structure. The approach is based on the definition of a stem multiplet, i.e. a structural element formed by two or more interacting stems. Using previously developed database of RNA structures (http://server3.lpm.org.ru/urs/) we have revealed all stem multiplets presented in the PDB database.
@article{MBB_2015_10_1_a1,
     author = {E. F. Baulin and M. A. Roytberg},
     title = {Stem multiplets: a new approach to the description of tertiary {RNA} motifs},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {54--59},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a1/}
}
TY  - JOUR
AU  - E. F. Baulin
AU  - M. A. Roytberg
TI  - Stem multiplets: a new approach to the description of tertiary RNA motifs
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 54
EP  - 59
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a1/
LA  - ru
ID  - MBB_2015_10_1_a1
ER  - 
%0 Journal Article
%A E. F. Baulin
%A M. A. Roytberg
%T Stem multiplets: a new approach to the description of tertiary RNA motifs
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 54-59
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a1/
%G ru
%F MBB_2015_10_1_a1
E. F. Baulin; M. A. Roytberg. Stem multiplets: a new approach to the description of tertiary RNA motifs. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 54-59. http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a1/

[1] Zuker M., Mathews D. H., Turner D. H., “Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide”, RNA Biochemistry and Biotechnology, NATO ASI Series, eds. J. Barciszewski, B. F. C. Clark, Kluwer Academic Publishers, Boston, 1999, 11–43

[2] Xia T., SantaLucia J. Jr., Burkard M. E., Kierzek R., Schroeder S. J., Jiao X., Cox C., Turner D. H., “Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs”, Biochemistry, 37 (1998), 4735

[3] Darty K., Denise A., Ponty Y., “VARNA: Interactive drawing and editing of the RNA secondary structure”, Bioinformatics, 25:15 (2009), 1974 | DOI

[4] Lai D., Proctor J. R., Zhu J. Y. A., Meyer I. M., “R-CHIE: a web server and R package for visualizing RNA secondary structures”, Nucleic Acids Research, 40:12 (2012), e95 | DOI

[5] Vanegas P. L., Hudson G. A., Davis A. R., Kelly S. C., Kirkpatrick C. C., Znosko B. M., “RNA CoSSMos: Characterization of Secondary Structure Motifs-a searchable database of secondary structure motifs in RNA three-dimensional structures”, Nucleic Acids Research, 40 (2012), D439–D444 | DOI

[6] Popenda M., Szachniuk M., Blazewicz M., Wasik S., Burke E. K., Blazewicz J., Adamiak R. W., “RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures”, BMC Bioinformatics, 11:1 (2010), 231 | DOI

[7] Han K., Lee Y., Kim W., “PseudoViewer: automatic visualization of RNA pseudoknots”, Bioinformatics, 18:1 (2002), S321–S328 | DOI

[8] Haslinger C., Stadler P. F., “RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties”, Bulletin of Mathematical Biology, 61:3 (1999), 437–467 | DOI

[9] Gan H. H., Pasquali S., Schlick T., “Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design”, Nucleic Acids Research, 31:11 (2003), 2926–2943 | DOI

[10] Rodland E. A., “Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence”, Journal of Computational Biology, 13:6 (2006), 1197–1213 | DOI | MR

[11] Bon M., Vernizzi G., Orland H., Zee A., “Topological classification of RNA structures”, Journal of Molecular Biology, 379:4 (2008), 900–911 | DOI

[12] Reidys C. M., Huang F. W., Andersen J. E., Penner R. C., Stadler P. F., Nebel M. E., “Topology and prediction of RNA pseudoknots”, Bioinformatics, 27:8 (2011), 1076–1085 | DOI

[13] Leontis N. B., Westhof E., “Geometric nomenclature and classification of RNA base pairs”, RNA, 7:4 (2001), 499–512 | DOI

[14] Chojnowski G., Walen T., Bujnicki J. M., “RNA Bricks-a database of RNA 3D motifs and their interactions”, Nucleic Acids Research, 42:D1 (2014), D123–D131 | DOI

[15] Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E., “The protein data bank”, Nucleic Acids Research, 28:1 (2000), 235–242 | DOI

[16] Lu X. J., Olson W. K., “3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures”, Nature Protocols, 3:7 (2008), 1213–1227 | DOI

[17] Hanson R. M., Prilusky J., Renjian Z., Nakane T., Sussman J. L., “JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia”, Israel Journal of Chemistry, 53:3–4 (2013), 207–216 | DOI