A two-phase model of blood flow in large and small blood vessels
Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 2, pp. 228-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

When blood flow in small vessels (less than 300 microns) was observed dependence of rheological properties of blood vessel size – an apparent blood viscosity decreases with decreasing diameter of the blood vessel. To describe the blood flow in small vessels is necessary to establish the equation of state power (except for other parameters) on the diameter of the vessel. The paper presents a single phase model to describe blood flow in both large and small blood vessels in the. The model yields an equation of the blood – the dependence of viscosity on the diameter of the vessel, and describes the flow characteristics, such as hematocrit and blood velocity. Based on this model was explained long ago known features (effects) of blood flow in vessels: depending on the hematocrit of the diameter of the vessel, the existence of cell-free layer of plasma near the vessel wall, stupid (as compared with the profile of Poiseuille flow) velocity profile of blood, depending on the viscosity blood on the diameter of the vessel. Analytical dependences for the velocity, viscosity and hematocrit blood, depending on the diameter of the blood vessel. A comparison with experimental data.
@article{MBB_2011_6_2_a6,
     author = {A. E. Medvedev},
     title = {A two-phase model of blood flow in large and small blood vessels},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {228--249},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a6/}
}
TY  - JOUR
AU  - A. E. Medvedev
TI  - A two-phase model of blood flow in large and small blood vessels
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2011
SP  - 228
EP  - 249
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a6/
LA  - ru
ID  - MBB_2011_6_2_a6
ER  - 
%0 Journal Article
%A A. E. Medvedev
%T A two-phase model of blood flow in large and small blood vessels
%J Matematičeskaâ biologiâ i bioinformatika
%D 2011
%P 228-249
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a6/
%G ru
%F MBB_2011_6_2_a6
A. E. Medvedev. A two-phase model of blood flow in large and small blood vessels. Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 2, pp. 228-249. http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a6/

[1] Pedli T., Gidrodinamika krupnykh krovenosnykh sosudov, Mir, M., 1983, 400 pp.

[2] Levtov V.A., Regirer S.A., Shadrina N.Kh., Reologiya krovi, Meditsina, M., 1982, 272 pp.

[3] Sharan M., Popel A.S., “A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall”, Biorheology, 38 (2001), 415–428

[4] Pries A.R., Secomb T.W., “Blood Flow in Microvascular Networks”, Handbook of Physiology: Microcirculation, eds. Tuma R.F., Dura W.N., Ley K., Academic Press, 2008, 3–36

[5] Moyers-Gonzalez M., Owens R.G., Fang J., “A non-homogeneous constitutive model for human blood. Part. 1. Model derivation and steady flow”, J. Fluid Mech., 617 (2008), 327–453 | DOI | MR

[6] Pan W., Caswell B., Karniadakis G.E., “A low-dimensional model for the red blood cell”, Soft Matter, 6 (2010), 4366–4376 | DOI

[7] Karo K., Pedli T., Shroter R., Sid U., Mekhanika krovoobrascheniya, Mir, M., 1981, 624 pp.

[8] Makovei N., Gidravlika bureniya, Nedra, M., 1986, 536 pp.

[9] Nigmatulin R.I., Dinamika mnogofaznykh sred, Ch. I, Nauka, M., 1987, 464 pp.

[10] Nigmatulin R.I., Dinamika mnogofaznykh sred, Ch. II, Nauka, M., 1987, 360 pp.

[11] Fung Y.C., Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, 1993, 568 pp.

[12] Pries A.R., Secomb T.W., Gaehtgens P., Gross J.F., “Blood flow in microvascular networks. Experiments and simulation”, Circular Research, 67 (1990), 826–834

[13] Pries A.R., Neuhaus D., Gaehtgens P., “Blood viscosity in tube flow: dependence on diameter and hematocrit”, Am. J. Physiol. Heart Circ. Physiol., 263 (1992), H1770–H17787

[14] Pries A.R., Kanzow G., Gaehtgens P., “Microphotometric determination of hematocrit in small vessels”, Am. J. Physiol., 245 (1983), H167–H177

[15] Albrecht K.H., Gaehtgens P., Pries A., Heuser M., “The Fahraeus effect in narrow capillaries (i.d. 3.3 to 11.0 $\mu m$)”, Microvascular Research, 18:1 (1979), 33–47 | DOI

[16] Gavrilchak I.N., Ignatev V.V., Kidalov V.N., Rymkevich P.P., Solovev V.N., Khadartsev A.A., “O formoobrazovanii eritrotsitov v potoke krovi”, Vestnik novykh meditsinskikh tekhnologii, XIII:1 (2006), 6–9

[17] Ignatev V.V., Kidalov V.N., Rymkevich P.P., Samoilov V.O., “Massoperenos komponentov plazmy krovi cherez plazmalemmu eritrotsitov v pole tsentrobezhnykh sil”, Rossiiskii fiziologicheskii zhurnal im. I.M. Sechenova, 82:5–6 (1996), 72–78

[18] Ignatev V.V., Kidalov V.N., Khadartsev A.A., Syasin N.I., “Izmenenie nekotorykh fiziologicheskikh funktsii v eritrotsitakh cheloveka i mlekopitayuschikh po sravneniyu s eritrotsitami drugikh vidov zhivotnykh”, Vestnik novykh meditsinskikh tekhnologii, X:1 (2007), 6–11

[19] Long D.S., Smith M.L., Pries A.R., Ley K., Damiano E.R., “Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution”, Proc. Natl. Acad. Sci. USA, 101:27 (2004), 10060–10065 | DOI

[20] Damiano E.R., Long D.S., Smith M.L., “Estimation of viscosity profiles using velocimetry data from parallel flows of linearly viscous fluids: application to microvascular haemodynamics”, J. Fluid Mech., 512 (2004), 1–19 | DOI | MR | Zbl

[21] Loitsyanskii L.G., Mekhanika zhidkosti i gaza, Nauka, M., 1978, 736 pp.

[22] Georgievskii D.V., “Ob effektivnom predele tekuchesti v opredelyayuschikh sootnosheniyakh krovi in vivo”, Vestn. Mosk. un-ta. Ser. 1, Matematika. Mekhanika, 2006, no. 5, 51–54

[23] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1986, 736 pp.

[24] Jones R.T., “Blood flow”, Annual Review of Fluid Mechanics, 1 (1969), 223–2447 | DOI

[25] Sinaiskii E.G., Lapiga E.Ya., Zaitsev Yu.V., Separatsiya mnogofaznykh mnogokomponentnykh sistem, OOO “Hedra-Biznestsentr”, M., 2002, 621 pp.

[26] Medvedev A.E., “Blood motion in arteries with a deformable wall”, XIII International Conference on the Methods of Aerophysical Research, ed. Fomin V.M., Publ. House “Parallel”, Novosibirsk, 2007, 115–122

[27] Medvedev A.E., Samsonov V.I., Fomin V.M., “Matematicheskoe modelirovanie techeniya krovi v sosudakh”, Sistema krovoobrascheniya i arterialnaya gipertoniya: biofizicheskie i genetiko-fiziologicheskie mekhanizmy, matematicheskoe i kompyuternoe modelirovanie, eds. Ivanova L.N., Blokhin A.M., Markel A.L., Izd-vo SO RAN, Novosibirsk, 2008, 80–105

[28] Nair P.K., Simulation of oxygen transport in capillary, Ph. D. Thesis, Rice University, 1988, 309 pp.

[29] Nair P.K., Huang N.S., Hellums J.D. Olson J.S., “A simple model for prediction of oxygen transport rates by flowing blood in large capillaries”, Microvascular Research, 39:2 (1990), 203–211 | DOI

[30] Bugliarello G., Sevilla J., “Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes”, Biorheology, 1970, 85–107

[31] Reinke W., Gaehtgens P., Johnson P.C., “Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation”, Am. J. Physiol., 253 (1987), H540–H547