Determination of the invariant structural elements for the third variable domain of the HIV-1 gp120 protein by molecular modeling
Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 2, pp. 298-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

Static and dynamic models for the 3D structure of the HIV-1 gp120 third variable domain (V3 loop) were built by computer modeling for the four differing in genetic and biological properties viral modifications that circulate in the countries of Eastern Europe, such as Russia, Belarus and Ukraine. Comparative analysis of the V3 calculated structures was carried out, allowing one to disclose a series of regularities in the spatial arrangement of this site of the HIV-1 envelope, which forms the principal target for neutralizing antibodies as well as the determinant responsible for penetration of the viral genome into macrophages and T-lymphocytes. As a result, despite the HIV-1 genetic diversity, the V3 loop was shown to form at least three conserved structural motifs including the gp120 residues critical for cell tropism. These invariant structural elements of the HIV-1 V3 loop are considered as the promising targets for the design of novel, potent and broad antiviral agents.
@article{MBB_2011_6_2_a4,
     author = {Yu. V. Kornoushenko and I. V. Anishchenko and A. V. Tuzikov and A. M. Andrianov},
     title = {Determination of the invariant structural elements for the third variable domain of the {HIV-1} gp120 protein by molecular modeling},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {298--311},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Kornoushenko
AU  - I. V. Anishchenko
AU  - A. V. Tuzikov
AU  - A. M. Andrianov
TI  - Determination of the invariant structural elements for the third variable domain of the HIV-1 gp120 protein by molecular modeling
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2011
SP  - 298
EP  - 311
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a4/
LA  - ru
ID  - MBB_2011_6_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Kornoushenko
%A I. V. Anishchenko
%A A. V. Tuzikov
%A A. M. Andrianov
%T Determination of the invariant structural elements for the third variable domain of the HIV-1 gp120 protein by molecular modeling
%J Matematičeskaâ biologiâ i bioinformatika
%D 2011
%P 298-311
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a4/
%G ru
%F MBB_2011_6_2_a4
Yu. V. Kornoushenko; I. V. Anishchenko; A. V. Tuzikov; A. M. Andrianov. Determination of the invariant structural elements for the third variable domain of the HIV-1 gp120 protein by molecular modeling. Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 2, pp. 298-311. http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a4/

[1] Hartley O., Klasse P.J., Sattentau Q.J. and Moore J.P., “V3: HIV s Switch-Hitter”, AIDS Res. Hum. Retroviruses, 21 (2005), 171–189 | DOI

[2] Sirois S., Sing T. and Chou K.C., “HIV-1 gp120 V3 loop for structure-based drug design”, Curr. Protein Pept. Sci., 6 (2005), 413–422 | DOI

[3] Andrianov A.M., “Human immunodeficiency virus-1 gp120 V3 loop for anti-acquired immune deficiency syndrome drug discovery: computer-aided approaches to the problem solving”, Expert Opin. Drug. Discov., 6 (2011), 419–435 | DOI

[4] Huang C.C., Tang M., Zhang M.Y., Majeed S., Montabana E., Stanfield R.L., Dimitrov D.S., Korber B., Sodroski J., Wilson I.A., Wyatt R. and Kwong P.D., “Structure of a V3-containing HIV-1 gp120 core”, Science, 310 (2005), 1025–1028 | DOI

[5] Huang C.C., Lam S.N., Acharya P., Tang M., Xiang S.H., Hussan S.S., Stanfield R.L., Robinson J., Sodroski J., Wilson I.A., Wyatt R., Bewley C.A. and Kwong P.D., “Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4”, Science, 317 (2007), 1930–1934 | DOI

[6] Chen L., Do Kwon Y., Zhou T., Wu X., O'Dell1 S., Cavacini L., Hessell A.J., Pancera M., Tang M., Xu L., Yang Z.-Y., Zhang M.-Y., Arthos J., Burton D.R., Dimitrov D.S., Nabel G.J., Posner M.R., Sodroski J., Wyatt R., Mascola J.R. and Kwong P.D., “Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120”, Science, 326 (2009), 1123–1127 | DOI

[7] Rini J.M., Stanfield R.L., Stura E.A., Salinas P.A., Profy A.T. and Wilson I.A., “Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop”, Proc. Natl. Acad. Sci. USA, 90 (1993), 6325–6329 | DOI

[8] Ghiara J.B., Stura E.A., Stanfield R.L., Profy A.T. and Wilson I.A., “Crystal structure of the principal neutralization site of HIV-1”, Science, 264 (1994), 82–85 | DOI

[9] Stanfield R.L., Cabezas E., Satterthwait A.C., Stura E.A., Profy A.T. and Wilson I.A., “Dual conformations for the HIV-1 gp120 V3 loop in complexes with different neutralizing Fabs”, Structure, 7 (1999), 131–142 | DOI

[10] Stanfield R.L., Ghiara J.B., Saphire E.O., Profy A.T. and Wilson I.A., “Recurring conformation of the human immunodeficiency virus type 1 gp120 V3 loop”, Virology, 315 (2003), 159–173 | DOI

[11] Stanfield R.L., Gorny M.K., Williams C., Zolla-Pazner S. and Wilson I.A., “Structural rationale for the broad neutralization of HIV-1 by human monoclonal antibody 447 52D”, Structure, 12 (2004), 193–204

[12] Ding J., Smith A.D., Geisler S.C., Ma X., Arnold G.F. and Arnold E., “Crystal structure of a human rhinovirus that displays part of the HIV-1 V3 loop and induces neutralizing antibodies against HIV-1”, Structure, 10 (2002), 999–1011 | DOI

[13] Stanfield R.L., Gorny M.K., Zolla-Pazner S. and Wilson I.A., “Crystal structures of human immunodeficiency virus type 1 (HIV-1) neutralizing antibody 2219 in complex with three different V3 peptides reveal a new binding mode for HIV-1 cross-reactivity”, J. Virol., 80 (2006), 6093–6105 | DOI

[14] Bell C.H., Pantophlet R., Schiefner A., Cavacini L.A., Stanfield R.L., Burton D.R. and Wilson I.A. Structure of antibody F425-B4e8 in complex with a V3 peptide reveals a new binding mode for HIV-1 neutralization, J. Mol. Biol., 375 (2008), 969–978 | DOI

[15] Dhillon A.K., Stanfield R.L., Gorny M.K., Williams C., Zolla-Pazner S. and Wilson I.A., “Structure determination of an anti-HIV-1 Fab 447-52D-peptide complex from an epitaxially twinned data set”, Acta Crystallogr., Sect D, 64 (2008), 792–802 | DOI

[16] Burke V., Williams C., Sukumaran M., Kim S., Li H., Wang X., Gorny M., Zolla-Pazner S. and Kong X., “Structural basis of the cross-reactivity of genetically related human anti-HIV-1 mAbs: implications for design of V3-based immunogens”, Structure, 17 (2009), 1538–1546 | DOI

[17] Totrov M., Jiang X., Kong X.P., Cohen S., Krachmarov C., Salomon A., Williams C., Seaman M.S., Cardozo T., Gorny M.K., Wang S., Lu S., Pinter A. and Zolla-Pazner S., “Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold”, Virology, 405 (2010), 513–523 | DOI

[18] Jiang X., Burke V., Totrov M., Williams C., Cardozo T., Gorny M.K., Zolla-Pazner S. and Kong X.P., “Conserved structural elements in the V3 crown of HIV-1 gp120”, Nat. Struct. Mol. Biol., 17 (2010), 955–961 | DOI

[19] Catasti P., Fontenot J.D., Bradbury E.M. and Gupta G., “Local and global structural properties of the HIVMN V3 loop”, J. Biol. Chem., 270 (1995), 2224–2232 | DOI

[20] Gupta G., Anantharamaiah G.M., Scott D.R., Eldridge J.H. and Myers G., “Solution structure of the V3 loop of a Thailand HIV isolate”, J. Biomol. Struct. Dynam., 11 (1993), 345–366

[21] Vu H.M., de Lorimier R., Moody M.A., Haynes B.F. and Spicer L.D., “Conformational preference of a chimeric peptide HIV-1 immunogen from the C4-V3 domains of gp120 envelope protein of HIV CANOA based on solution NMR: comparison to a related immunogenic peptide from HIV-1 RF”, Biochemistry, 35 (1996), 5158–5165 | DOI

[22] Vranken W.F., Budesinsky M. and Martins J.C., “Conformational features of a synthetic cyclic peptide corresponding to the complete V3 loop of the RF HIV-1 strain in water and water/trifluoroethanol solutions”, Eur. J. Biochem., 236 (1996), 100–108 | DOI

[23] Sarma A.V., Raju T.V. and Kunwar A.C., “NMR study of the peptide present in the principal neutralizing determinant (PND) of HIV-1 envelope glycoprotein gp120”, J. Biochem. Biophys. Methods, 34 (1997), 83–98 | DOI | MR

[24] Tolman R.L., Bednarek M.A., Johnson B.A., Leanza W., Marburg S., Underwood D.J., Emini E.A. and Conley A.J., “Cyclic V3 loop-related HIV-1 conjugate vaccines”, Int. J. Pept. Protein Res., 41 (1993), 455–466 | DOI

[25] Jelinek R., Terry T.D., Gesell J.J., Malik P., Perham R.N. and Opella S., “NMR structure of the principal neutralizing determinant of HIV-1 displayed in filamentous bacteriophage coat protein”, J. Mol. Biol., 266 (1997), 649–655 | DOI

[26] Vranken W.F., Fant F., Budesinsky M. and Borremans F.A.M., “Conformational model for the consensus V3 loop of the envelope protein gp120 of HIV-1 in a 20% trifluoroethanol/water solution”, Eur. J. Biochem., 268 (2001), 2620–2628 | DOI

[27] Andrianov A.M., “Global and local structural properties of the principal neutralizing determinant of the HIV-1 envelope protein gp120”, J. Biomol. Struct. Dynam., 16 (1999), 931–953

[28] Andrianov A.M., “Local structural properties of the V3 loop of Thailand HIV-1 isolate”, J. Biomol. Struct. Dynam., 19 (2002), 973–990

[29] Andrianov A.M. and Sokolov Yu.A., “Structure and polymorphism of the principal neutralization site of Thailand HIV-1 isolate”, J. Biomol. Struct. Dynam., 20 (2003), 603–614

[30] Andrianov A.M. and Sokolov Yu.A., “3D structure model of the principal neutralizing epitope of Minnesota HIV-1 isolate”, J. Biomol. Struct. Dynam., 21 (2004), 577–590

[31] Andrianov A.M., “Dual spatial folds and different local structures of the HIV-1 immunogenic crown in various virus isolates”, J. Biomol. Struct. Dynam., 22 (2004), 159–170

[32] Andrianov A.M. and Veresov V.G., “Determination of structurally conservative amino acids of the HIV-1 protein gp120 V3 loop as promising targets for drug design by protein engineering approaches”, Biochemistry (Moscow), 71 (2006), 906–914 | DOI

[33] Andrianov A.M., “Study on Conformational Homology of the HIV-1 gp120 Protein V3 Loop. Structural Analysis of the HIV-RF and HIV-Thailand Viral Strains”, Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 1 (2007), 125–130 | DOI

[34] Andrianov A.M. and Veresov V.G., “Structural analysis of the HIV-1 gp120 V3 loop: application to the HIV-Haiti isolates.”, J. Biomol. Struct. Dynam., 24 (2007), 597–608

[35] Andrianov A.M., “Determining the Invariant Structure Elements of the HIV-1 Variable V3 Loops: Insight into the HIV-MN and HIV-Haiti Isolates”, J. Biomol. Struct. Dynam., 26 (2008), 247–254

[36] Andrianov A.M., “Computational anti-AIDS drug design based on the analysis of the specific interactions between immunophilins and the HIV-1 gp120 V3 loop. Application to the FK506-binding protein”, J. Biomol. Struct. Dynam., 26 (2008), 49–56

[37] Andrianov A.M., “Immunophilins and HIV-1 V3 loop for structure-based anti-AIDS drug design”, J. Biomol. Struct. Dynam., 26 (2009), 445–454

[38] Andrianov A.M. and Anishchenko I.V., “Computational Model of the HIV-1 Subtype A V3 Loop: Study on the Conformational Mobility for Structure-Based Anti-AIDS Drug Design”, J. Biomol. Struct. Dynam., 27 (2009), 179-194

[39] Andrianov A.M. and Anishchenko I.V., “Computer-assisted anti-AIDS drug development: cyclophilin B against the HIV-1 subtype A V3 loop”, Health, 2 (2010), 56–65 | DOI

[40] LaRosa G.J., Davide J.P., Weinhold K., Waterbury J.A., Profy A.T., Lewis J.A., Langlois A.J., Dressman G.R., Boswell R.N., Shadduk P., Holley L.H., Karplus M., Bolognesi D.P., Matthews T.J., Emini E.A. and Putney S.D., “Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant”, Science, 249 (1990), 932–935 | DOI

[41] Kartikeyan S., Bharmal R.N., Tiwari R.P. and Bisen P.S., HIV and AIDS: Basic Elements and Priorities, Springer, Netherlands, 2007, 428 pp.

[42] Andrianov A.M., Anishchenko I.V. and Tuzikov A.V., “Discovery of novel promising targets for anti-AIDS drug developments by computer modeling: application to the HIV-1 gp120 V3 loop”, J. Chem. Inf. Model., 51 (2011), 2760–2767 | DOI

[43] Smith, J.A. and Pease L.J., “Reverse turns in peptides and proteins”, CRC Crit. Rev. Biochem., 8 (1980), 315–399 | DOI

[44] (accessed 28 December 2011) http://www.mbio.ncsu.edu/BioEdit/page2.html

[45] Sali A. and Blundell T.L., “Comparative protein modeling by satisfaction of spatial restraints”, J. Mol. Biol., 234 (1993), 779–815 | DOI

[46] Fiser A., Do R.K. and Sali A., “Modeling of loops in protein structures”, Protein Science, 9 (2000), 1753–1773 | DOI

[47] Leonard C.K., Spellman M.W., Riddle L., Harris R.J., Thomas J.N. and Gregory T.J., “Assignment of intra-chain disulfide bond and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in chinese hamster ovary cells”, Biol. Chem., 265 (1990), 10373–10382

[48] Case D.A., Darden T.A., Cheatham T.E., III, Simmerling C.L., Wang J., Duke R.E., Luo R., Crowley M., Walker R.C., Zhang W., Merz K.M., Wang B., Hayik S., Roitberg A., Seabra G., Kolossváry I., Wong K.F., Paesani F., Vanicek J., Wu X., Brozell S.R., Steinbrecher T., Gohlke H., Yang L., Tan C., Mongan J., Hornak V., Cui G., Mathews D.H., Seetin M.G., Sagui C., Babin V. and Kollman P.A., AMBER 10, University of California, San Francisco, 2008

[49] Laskowski R.A., MacArthur M.W., Moss D.S. and Thornton J.M., “PROCHECK: a program to check the stereochemical quality of protein structures”, J. Appl. Cryst., 26 (1993), 283–291 | DOI

[50] Hutchinson E.G. and Thornton J.M., “PROMOTIF – a program to identify and analyze structural motifs in proteins”, Protein Sci., 5 (1996), 212–220 | DOI

[51] Sherman S.A. and Johnson M.E., “Derivation of locally accurate spatial protein structure from NMR data”, Prog. Biophys. Mol. Biol., 59 (1993), 285–339 | DOI

[52] Ablameiko S.V., Abramov S.M., Anischenko V.V., Medvedev S.V., Paramonov N.N., Chizh O.P., Superkompyuternye konfiguratsii SKIF, Ob'edinennyi institut problem informatiki NAN Belarusi, Minsk, 2005, 170 pp.

[53] Liitsola K., Laukkanen T., Mashkilleyson N., Brummer-Korvenkontio H., Vanhatalo J., Leinikki P., Salminen M.O., Tashkinova I., Momot O., Korovina G., Smolskaja T. and Chaplinskas S., “HIV-1 genetic subtype A/B recombinant strain causing an explosive epidemic in injecting drug users in Kaliningrad”, AIDS, 12 (1998), 1907–1919 | DOI

[54] Eremin V.F., Gasich E.L. and Sasinovich S.V., “A new unique recombinant HIV-1 isolated from child born from HIV-infected mother”, AIDS Res Hum Retroviruses, 27 (2011), 1323–1326 | DOI

[55] Shankarappa R., Margolick J.B., Gange S.J., Rodrigo A.G., Upchurch D., Farzadegan H., Gupta P., Rinaldo C.R., Learn G.H., He X., Huang X.-L. and Mullins J.I., “Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection”, J. Virology, 73 (1999), 10489–10502

[56] Dunbrack R.L.Jr. and Karplus M., “Backbone-dependent rotamer library for proteins. Application to side-chain prediction”, J. Mol. Biol., 230 (1993), 543–74 | DOI

[57] de Parseval A., Bobardt M.D., Chatterji A., Chatterji U., Elder J.H., David G., Zolla-Pazner S., Farzan M., Lee T.H. and Gallay P.A., “A highly conserved arginine in gp120 governs HIV-1 binding to both syndecans and CCR5 via sulfated motifs”, J. Biol. Chem., 280 (2005), 39493–39504 | DOI

[58] Wang W.K., Dudek T., Zhao Y.J., Brumblay H.G., Essex M. and Lee T.H., “CCR5 coreceptor utilization involves a highly conserved arginine residue of HIV type 1 gp120”, Proc. Natl. Acad. Sci. USA, 95 (1998), 5740–5745 | DOI

[59] Ogert R.A., Lee M.K., Ross W., Buckler-White A., Martin M.A. and Cho M.W., “N-linked glycosylation sites adjacent to and within the V1/V2 and the V3 loops of dualtropic human immunodeficiency virus type 1 isolate DH12 gp120 affect coreceptor usage and cellular tropism”, J. Virol., 75 (2001), 5998–6006 | DOI

[60] McCaffrey R.A., Saunders C., Hensel M. and Stamatatos L., “N-linked glycosylation of the V3 loop and the immunologically silent face of gp120 protects human immunodeficiency virus type 1 SF162 from neutralization by anti-gp120 and anti-gp41 antibodies”, J. Virol., 78 (2004), 3279–3295 | DOI

[61] Teeraputon S., Louisirirojchanakul S. and Auewarakul P., “N-linked glycosylation in C2 region of HIV-1 envelope reduces sensitivity to neutralizing antibodies”, Viral Immunol., 18 (2005), 343–353 | DOI

[62] Li Y., Rey-Cuille M.A. and Hu S.L., “N-linked glycosylation in the V3 region of HIV type 1 surface antigen modulates coreceptor usage in viral infection”, AIDS Res. Hum. Retroviruses, 17 (2001), 1473–1479 | DOI

[63] Malenbaum S.E., Yang D., Cavacini L., Posner M., Robinson J. and Cheng-Mayer C., “The N-terminal V3 loop glycan modulates the interaction of clade A and B human immunodeficiency virus type 1 envelopes with CD4 and chemokine receptors”, J. Virol. yr 2000, 74, 11008–11016

[64] Pollakis G., Kang S., Kliphuis A., Chalaby M.I., Goudsmit J. and Paxton W.A., “N-linked glycosylation of the HIV type-1 gp120 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization”, J. Biol. Chem., 276 (2001), 13433–13441 | DOI

[65] Polzer S., Dittmar M.T., Schmitz H., Meyer B., Muller H., Krausslich H.G. and Schreiber M., “Loss of N-linked glycans in the V3-loop region of gp120 is correlated to an enhanced infectivity of HIV-1”, Glycobiology, 11 (2001), 11-19 | DOI

[66] Ivanoff L.A., Looney D.J., McDanal C., Morris J.F., Wong-Staal F., Langlois A.J., Petteway S.R.Jr. and Matthews T.J., “Alteration of HIV-1 infectivity and neutralization by a single amino acid replacement in the V3 loop domain”, AIDS Res. Hum. Retroviruses, 7 (1991), 595–603 | DOI

[67] Lee S.K., Pestano G.A., Riley J., Hasan A.S., Pezzano M., Samms M., Park K.J., Guyden J. and Boto W.M., “A single point mutation in HIV-1 V3 loop alters the immunogenic properties of rgp120”, Arch. Virol., 145 (2000), 2087–2103 | DOI

[68] Hu Q., Napier K.B., Trent J.O., Wang Z., Taylor S., Griffin G.E., Peiper S.C. and Shattock R.J., “Restricted variable residues in the C-terminal segment of HIV-1 V3 loop regulate the molecular anatomy of CCR5 utilization”, J. Mol. Biol., 350 (2005), 699–712 | DOI

[69] Chandrasekhar K., Profy A.T. and Dyson H.J., “Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120”, Biochemistry, 30 (1991), 9187–9194 | DOI