Rate calculation for metabolic reactions in a~living and growing cell by the method of steady-state stoichiometric flux balance
Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 1, pp. 98-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

Software for a mathematical modeling of stationary metabolism in a growing cell has been developed. The software allows making calculation for optimal economic coefficients of growth of biomass and excretion of products of biosynthesis, which are achievable at the ideal regulation of the processes. It also allows calculating of distribution of rates of reactions inside a cell and in its compartments (including rates of exchange of metabolites between compartments), which corresponds to these optimal regimes. The program FLUX II can operate in the Windows environment. The program has a convenient interface; it is provided with means, which prevent infinite looping of the algorithm and allow performing contensive analysis of the model having been developed. The program also enables presentation of the results of calculation and analysis of the model in a digital or graphical form. By means of the program a mathematical model of the steady-state metabolism of a cell of E.coli has been developed, and the best possible economic coefficients of growth of biomass of these cells under aerobic conditions on glucose, and the distribution of rates of reactions, which corresponds to this regime of metabolism, have been calculated. Satisfactory agreement of the results of calculations and analysis with experimental data has been demonstrated. Possible ways of use of the program for solving practical problems in modern biotechnology have been discussed.
@article{MBB_2007_2_1_a10,
     author = {N. N. Nazipova and Yu. E. El'kin and V. V. Panyukov and L. N. Drozdov-Tikhomirov},
     title = {Rate calculation for metabolic reactions in a~living and growing cell by the method of steady-state stoichiometric flux balance},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {98--119},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a10/}
}
TY  - JOUR
AU  - N. N. Nazipova
AU  - Yu. E. El'kin
AU  - V. V. Panyukov
AU  - L. N. Drozdov-Tikhomirov
TI  - Rate calculation for metabolic reactions in a~living and growing cell by the method of steady-state stoichiometric flux balance
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2007
SP  - 98
EP  - 119
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a10/
LA  - ru
ID  - MBB_2007_2_1_a10
ER  - 
%0 Journal Article
%A N. N. Nazipova
%A Yu. E. El'kin
%A V. V. Panyukov
%A L. N. Drozdov-Tikhomirov
%T Rate calculation for metabolic reactions in a~living and growing cell by the method of steady-state stoichiometric flux balance
%J Matematičeskaâ biologiâ i bioinformatika
%D 2007
%P 98-119
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a10/
%G ru
%F MBB_2007_2_1_a10
N. N. Nazipova; Yu. E. El'kin; V. V. Panyukov; L. N. Drozdov-Tikhomirov. Rate calculation for metabolic reactions in a~living and growing cell by the method of steady-state stoichiometric flux balance. Matematičeskaâ biologiâ i bioinformatika, Tome 2 (2007) no. 1, pp. 98-119. http://geodesic.mathdoc.fr/item/MBB_2007_2_1_a10/

[1] H.-G. Holzhütter, “The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks”, Eur. J. Biochem., 271 (2004), 2905–2922 | DOI

[2] E. T. Papoutsakis, “Equations and Calculations for Fermentations of Butyric Acid Bacteria”, Biotechnology and Bioengineering, 26 (1984), 174–187 | DOI

[3] R. P. Desai, L. K. Nielsen, E. T. Papoutsakis, “Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints”, Journal of Biotechnology, 71 (1999), 191–205 | DOI

[4] Watson M. R., “A discrete model of bacterial metabolism”, CABIOS, 2:1 (1986), 23–27

[5] Fell D., Small J. R., “Fat synthesis in adipose tissue”, Biochem. J., 238 (1986), 781–786

[6] Drozdov-Tikhomirov L. N., Scurida G. I., Serganova V. V., “Inner metabolic fluxes in multienzyme systems: Lysine syntesis on acetate by Corynebacterium glutamicum”, Biotechnologia (Moscow), 2:8 (1986), 28–37

[7] Drozdov-Tikhomirov L. N., Scurida G. I., Serganova V. V., “Flux Stoichiometric Models of Cell Metabolism”, Reports of International Conference “Modeling and Computer Methods in Molecular Biology and Genetics”, Nova Science Publisher, N.Y., 1992, 329–334

[8] L. N. Drozdov-Tikhomirov, G. I. Scurida, A. V. Davidov, A. A. Alexandrov, R. A. Zvyagilskaya, “Mathematical modeling of living cell metabolism using the method of steady-state stoichiometric flux balance”, Journal of Bioinformatics and Computational Biology, 4:4 (2006), 865–885 | DOI

[9] R. Schuster, S. Schuster, “Refined algorithm and computer program for calculating all non-negative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed”, Comput. Appl. Biosci., 9 (1993), 79–85

[10] Savinell J. M., Palsson B. O., “Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism”, J. Theor. Biol., 154:4 (1992), 421–454 | DOI

[11] A. Varma, B. Palsson, “Metabolic capabilities of Escherichia coli. II. Optimal growth patterns”, J. Theor. Biol., 165 (1993), 503–522 | DOI

[12] Varma A., Palsson B. O., “Metabolic flux balancing: basic concepts, scientific and practical use”, Bio/Technology, 12 (1994), 994–998 | DOI

[13] Edwards J. S., Ramakrishna R., Schilling C. H., Palsson B. O., “Metabolic flux balance analysis”, Metabolic engineering, eds. S. Y. Lee and E. T. Papoutsakis, Marcel Dekker, N.Y., 1999, 13–57

[14] Edwards J. S., Covert M., Palsson B. O., “Metabolic modelling of microbes: the flux-balance approach”, Environ. Microbiol., 4 (2002), 133–140 | DOI

[15] Foster J., Famili I., Fu P. C., “Palsson BO and Nielsen. I. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network”, Genome Res., 13 (2003), 244–253 | DOI

[16] Forster J., Famili I., Palsson B. O., Nielsen J., “Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae”, OMICS, 7:2 (2003), 193–202 | DOI

[17] Famili I., Forster J., Nielsen J., Palsson B. O., “Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network”, Proc. Natl. Acad. Sci. USA, 100:23 (2003), 13134–13139 | DOI

[18] Fong S. S., Marciniak J. Y., Palsson B. O., “Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model”, J. Bacteriol., 185:21 (2003), 6400–6408 | DOI

[19] Ibarra R. U., Fu P., Palsson B. O., DiTonno J. R., Edwards J. S., “Quantitative analysis of Escherichia coli metabolic phenotypes within the context of phenotypic phase planes”, J. Mol. Microbiol. Biotechnol., 6:2 (2003), 101–108 | DOI

[20] Allen T. E., Herrgard M. J., Liu M., Qiu Y., Glasner J. D., Blattner F. R., Palsson B. O., “Genomescale analysis of the uses of the Escherichia coli genome: model-driven analysis of heterogeneous data sets”, J. Bacteriol., 185:21 (2003), 6392–6399 | DOI

[21] Duarte N. C., Herrhard M. J., Palsson B. O., “Reconstruction and validation of Saccharomyces iND750, a fully compartmentalized genome-scale metabolic model”, Genome Res., 14:7 (2004), 1298–1309 | DOI

[22] Reed J. L., Palsson B. O., “Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states”, Genome Res., 14:9 (2004), 1797–1805 | DOI

[23] Covert M. W., Knight E. M., Reed J. L., Herrgard M. J., Palsson B. O., “Integrating high-throughput and computational data elucidates bacterial networks”, Nature, 429:6987 (2004), 92–96 | DOI

[24] Wiback S. J., Mahadevan R., Palsson B. O., “Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum”, Biotechnol. Bioeng., 86:3 (2004), 317–331 | DOI

[25] Reed J. L., Vo T. D., Schilling C. H., Palsson B. O., “An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)”, Genome Biol., 4:9 (2004), R54 | DOI

[26] Famili I., Palsson B. O., “Systemic metabolic reactions are obtained by singular value decomposition of genome-scale stoichiometric matrices”, J. Theor. Biol., 224:1 (2004), 87–96 | DOI | MR

[27] Fong S. S., Palsson B. O., “Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes”, Nat. Genet., 36:10 (2004), 1056–1058 | DOI

[28] Duarte N. C., Palsson B. O., Fu P., “Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae”, BMC Genomics., 5:1 (2004), 63 | DOI

[29] Duarte N. C., Herrgard M. J., Palsson B. O., “Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model”, Genome Res., 14:7 (2004), 1298–1309 | DOI

[30] Fong S. S., Burgard A. P., Herring C. D., Knight E. M., Blattner F. R., Maranas C. D., Palsson B. O., “In silico design and adaptive evolution of Escherichia coli for production of lactic acid”, Biotechnol. Bioeng., 91:5 (2005), 643–648 | DOI | MR

[31] Mahadevan R., Palsson B. O., “Properties of metabolic networks: structure versus function”, Biophys. J., 88:1 (2005), L07–L09 | DOI

[32] Tempest D. W., Neussell O. M., “Growth Yield and Energy Distribution In Escherichia Coli and Salmonella Typhimurium”, Cellular and Molecular Biology, v. 1, eds. F. C. Neidhard, Am. Soc. for Microbiology, Washington, 1987, 797

[33] Stouthamer A. N., “The search for correlation between theoretical and experimental growth yield”, Int. Rev. Biochem., 21 (1979), 1–47

[34] C. Dzh. Pert, Osnovy kultivirovaniya mikroorganizmov i kletok, Mir, M., 1978, 104

[35] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial Press, M., 2003 | MR